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ABSTARCT 
Increasing the strength of movable railroads against their lateral displacement would make the operation of the technologic railroad haulage in the opencast mines 
much more reliable. This is related to the increasing of strength of extracting a single traverse and determining the stress while doing it. 
A model is examined, which is created by Manevich-Pavlenko in the middle of the 80’s of 20th century and its applicability to the above task is shown by means of the 
theoretical mechanics, mathematical physics  and the classical mathematical analysis. 
 

INTRODUCTION 
 
   There is an observation of a unique phenomenon related to 
movable railroads - displacement in a horizontal plane during 
summer. One of the considerable reasons for that is their 
insufficient strength against lateral movement in a horizontal 
plane. 
 
   Relatively cost-effective opportunity without general raise of 
cost for the upper construction of the movable railroads is to in-
build into it a metal traverse of the shape of a cross in the 
underrail section.  
 
   This engeneering approach, realized in large scale requires 
immense investments. It is quite natural to question if they are 
reasonable and if there are any possibilities to estimate 
quantitatively and presicely enough the increase of strength of 
movable railroads in a horizontal plane. Actually the problem 
reduces to finding a sufficiently reliable method for calculating 
the strength of extracting of a single traverse from the ballast 
bed. This requires development of an adequate mathematical 
apparatus, based on a physically grounded model. The 
process, though, has a dynamical character. Therefore it is 
necessary to describe the mechanical system of three 
traverses (the one in the middle is supposed to be released of 
upholding couplings) and ballast in a moment of limited 
balance. i.e. a model is needed through which by the same 
type of equations to describe the processes of limited balance 
between the ballast and the traverses with a conventional and 
crossed shape in the under-rail cut, when the system is still at 
rest, however there is an initial, even though an infinitely small 
movement of the extracted traverse.  
 
 
 
 
 

BASIC MODEL 
 
   In general there are two approaches. The first one requires 
the establishing of an intentional model, which describes the 
discussed physical processes. However, this a very difficult 
task, which is to be solved only by the efforts of collective 
teams. The second approach assumes utilizing of a physics-
mathematical model, intended for other conditions, but 
applicable to the specific task. Its implementation demands 
relevant physical-mathematical arguments. 
 
   The second approach is chosen in this study. The model of 
Manevich and Pavlenko, developed in the beginning of 90’s in 
(Manevich L. et al., 1982) is selected as a basic model. Its 
essence is illustrated in fig. 1, and the common scheme of 
thinking is as follows:  

 
Figure 1. Basic model of Manevich and Pavlenko 

 
   Physically, the model represents a plane plate (item 2) with 
measurements "2.b" and "h", and a fibre is extracted out of it 
(item 1). The plane plate (2) represents a homogeneous 
medium. The fiber (1) is allocated in it and it has a strcuture 
different from ambient structure: 

 non-deformable; 

 rigid. 
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   After applying an axis force "FO" on the fiber into the direction of 
"х" axis, extracting of the fiber (1) from the environmental 
medium of the plate (2) begins. For conciseness, further on the 
ambience of the plate will be called matrix. Within the process 
of extracting (extracting), the behaviour of the fiber (1) and the 
matrix (2) is shown by the following dependences: 
- Equations of equilibrium of the matrix (2) – this a 

system of partial differential equations ( 1 ) ;  
- Equation of displacement of points of fiber  (1) - 

differential equation (2). 
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where:  
    z(u, V) – vector of displacing of the matrix; 
    u, V – vector components of displacing the matrix. In this 
case the axes х and у coincide; 
   G – rigidity of matrix to cutting; 
   FO – axis strength, applied to the fiber in the boundary point; 
   ЕА – geometrical characteristics of fiber when tensile stresses; 
   B1, В2 – rigidity to tensile stress and compression of the matrix; 
   u1,u2 – the coefficients of Poisson; 

    t(у) – tension to cutting between fiber and matrix. It is 

assumed that in the contact area  
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   W – extraction of fiber; 
   δ(у) – delta function of Diraque. It represents integral functional 
and  characterizes the extracting strength. 
 
   The new system of equations [(1) & (2)] has the following 
boundary conditions (3) – [3.1], [3.2], [3.3], [3.4]. 
 

   [3.1]    
0

0
x

U W

V





- its physical meaning is that in  

 
the direction of the fiber “у”, the component of solution “U” 
coincides with “W”, which is the solution of the equation (2), i.e., 
if the value of “W” is known at any point of "у", then “U” 
(component of the vector of extracting of the matrix) has 
the same value. Practically that means, that the vector of 
displacement of the matrix for points situated on the axis "у" has 
its second component V=0 (the solution Z=U, 0 or Z=W, 0); 
 

   [3.2]   0
y b

U V


   - its physical meaning is that  

 
the matrix is fastened on by its two ends in parallel to the axis 
"х", i.e., that immobility of the matrix is guaranteed out of 
points with coordinates "±b"; 
 

   [3.3]   
0

0
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- its physical meaning is that  

 
the vector of speed of displacement of the matrix on direction 
of axis “х” is equal to zero in the point х=0; 
 

   [3.4]   0
x

U V


   - its physical meaning is, that  

 
when “х” is very large, than displacements in the matrix are 
equal to zero. 
 
 

ANALOGICAL ADAPTATION OF THE BASIC MODEL TO 
THE SOLUTION OF THE TASK 

 
   The peculiarities of the model of Manevich-Pavlenko are: 

- The matrix is homogeneous medium; 
- The fiber has a structure, different from the 

structure of the matrix and carries the 
following characterist ics : 

 It is non-deformable; 

 It is rigid; 
 
   While extracting of a steel traverse of a crossed shape from 
the under-rail section, released from connections and dipped 
to its upper edge into gravel ballast prism, the following should 
be observed: 

- cutting up the gravel ballast along the surfaces, 
represented by lines 1-1 and 2-2 (fig. 2), i.e. because of 
the different structure, this system may be treated as 
follows: 

 the gravel – like a matrix; 

 the traverse – like an extracted fiber; 
- cutting up the gravel along the surface, which coincides 

with the lower base of the traverse, i.e. if assumed that 
through the height of the traverse the behavior of cutting 
through all horizontal sections of the extracted traverse is 
the same, than principally the picture resembles to a 
level of identification of the theoretical model according to 
fig. 1.  

 
   In case that the traverse is situated in the gravel bed and 
several traverses are missing around it, from both sides, then 
cutting of the gravel (according the above mentioned 
considerations) is realized under an angle φ (fig. 3) from the 
farther (in relation to the direction of extracting) end of the crossed 
extensions onto the surface, coinciding with the surface of the 
lower base. The last is due to the following circumstance:  
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Figure 2. Lines of cutting of the gravel ballast during the 
extraction of a cross-shaped traverse 

 

Figure 3. Illustration of cutting of gravel ballast, caused by the 
cross-shaped traverse 

 
   Availability of under-traverse thresholds under and near to 
the extracted traverse determines the larger strength of 
shearing of the ballast prism under angle "φ" (of internal 
friction of gravel) into depth towards the ground base. At 
the same time, force "Fo" actively operating on the axis 
of the traverse  seeks the zone of the less strength. And it is 
namely onto the horizontal plane, coinciding with the lower 
base of the extracted traverse due to the lower degree of 
consistence compared to compression of gravel in the zone 
of under-traverse thresholds. The above mentioned 
considerations are logical and truthful. But they do not report and 
there is no way to report, that the model of Manevich-Pavlenko is 
created to be applied to extracting of a fiber from composite 
medium.  
 
   A comprehensive theoretical is needed in order to prevent 
suspicions in the adequacy of utilizing  the basic model for the 
purposes of the above task. 
 
 

BASIC PRECONDITIONS ABOUT APPLICATION OF THE 
MODEL 

 
   The basic preconditions, assuming validity of the theoretical 
background for applying of the Manevich-Pavlenko model are 
as follows, according to fig. 4. 

 

 
Figure 4. Initial basis for genesis of the Manevich-Pavlenko 

model. а) principal scheme of the movable railroad line 
according the Manevich-Pavlenko model; b) physical behavior  

of the gravel ballast bed; c) elementary segment of the 
compacted gravel ballast bed. 

 
   They are as follows: 
 
   FIRST: It is assumed that, a plane fragment of the gravel 
ballast prism and the rail-traverse frame is been treated. It is 
supposed that, in whatever way (by an approach up to now 
unknown) the traverses are compressed volumetrically to the 
transformation into dimensionless fibers and through 
extracting them from the gravel ballast prism they provoke 
(by an approach up to now unknown) cutting in the gravel 
bed onto the axis "х" (fig. 4 а). 
 
   SECOND: The components U & V of the vector z of 
displacement of the matrix are in parallel to the axes х 
and у (fig.4 а); 
 
   THIRD: The elastic modulii of the gravel ballast bed, though 
close to the values on axes x and y are different, i.e., 

xx yyE E (fig. 4. а), i.e. the gravel prism is orthotropic. Thus 

the modulus on the axis of road Eyy is higher than the modulus 
transversely to the road Exx. 
 
   FOURTH: The gravel is compacted to a rate of formation of 
under-traverse thresholds and its compactness as a function of 
the bulk weight is figured out by the inequality: 
 

   1 2 , 4по фиг. 4ср в    

 
   where: γ θср is the gross weight, after which it is so 
compressed that its behavior and characteristics are similar 
to the behavior of an elastic body.. 
 
  FIFTH: The system is in a dynamical equilibrium, i.e. every one  
infinitely small element of the matrix is into an equilibrium – on 
(fig.4.c). 
 
 

REASONING OF THE COMPACTION OF THE CONCRETE 
PRISM 

 
   In connection to the fourth precondition and dependence (5), 
it should be notified that, during the development of (Stoyanov 
D. et al. 1998; 2000) by the team of D. Stoyanov, observations 
were made on the loading of the operating trains on a movable 
railroad at the “Obrouchishte” dumping area at “Trayanovo” 
mine of the “Maritza Iztok” Co.  
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  According to Ivanov G. (1981), Kostov T. (1991) etc. in 
Shahonyants G. (1982) etc., and general administrations of the 
conventional railroads in many counties assume that the gravel 
ballast bed of the railroad is compacted enough after passing 
over on it of 1,000,000 gross tons. Furthermore, it is assumed 
that the process goes on according to the response in fig.5. 
 

 
Figure 5. Illustration of the process of compacting of gravel in 
the gravel prism after passing over a definite gross-tonnage 

 
A constant number of cars of 16 is assumed with the aim of 
safety; 
    -  useful car volume is 40 m3 and own weight is 34 t.   
The transported overburden consists of different clays with 
average bulk weight of  2,1 t/m3 and average coefficient of 
swelling Кр = 1,45.   Twenty nine cars are measured and 
an average coefficient of filling up of cars is established 
to      Кн = 1,02. , 
In this case the gross weight of a train is: 
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and the loading stress requires addition of the weight of empty 
train – 
 

.л в вР n q  

 
   where: 

лР - weight of the locomotive. For EL2- лР series = 147 t; 

вn - number of cars in the train. Assumed вn =16; 

вV - volume of the bucket of the car. For the trains of Russian 

and Bulgarian manufacture with dumping cars - вV =40 m3; 

нK - coefficient of filling the bucket of the car. Average 

coefficient in the calculation is нK =1,02; 

рK - coefficient  на swelling. Assumed 
рK =1,45; 

Тq - coefficient of the cars Тq  34 t. 

 
   Therefore, the loading stress of one train is 2 274 t. 
 
   For the both mines, using the ¨Obruchishte¨ dumping area 
there is a two-shifts regime of railroad haulage. For the aim of 
safety a coefficient of use is assumed as  

вK = 0,75; 

- The loaded overburden spreader AS-6 accepts between 3 
and 6 trains per hour. For the aims of safety it is assumed 4 
trains/hour. 

Therefore, for a twenty four hour period the overburden 
spreader AS-6 accepts: 
 

. / . . 4.24.0,75 72вл дн вл h вN n T K   trains 

 
   Then the total gross tonnage for a twenty four hour period is: 

 

. . . 2274.72 163728бр дн вл дх брQ N Q t    

 
  This means that the gross tonnage of 1,000,000 t on the 
movable railroad of overburden spreader AS-6 at the 
¨Obruchishte¨ dumping area is accumulated for less than 7 
days. 
 
   Therefore, after 6-7 days of  operating on a new track the 
gravel in the gravel prism of the movable railroad near the 
overburden spreader AS-6 is thickened through (5) and its 
behavior and properties are approximating to those of the 
elastic body. 
 
 

THEORETICAL PROVE 
 
Since all the above is known, it is accepted that the matrix 
(gravel bed) is in equilibrium. Then every plane fragment of it 
(from first precondition) is in equilibrium. This also applies to 
the infinitely small element of the matrix – fig.-4.c., i.e. the 
conditions for equilibrium are in validity.  
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    Theoretical mechanics and strength of materials (Kisliakov 
S., 1980; Федосьев В., 1965 etc.) reveal that, the infinitely 
small movements of the matrix through components U and V of 
the vector Z (from the second precondition) may be introduced 
down by the equations: 
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    The generalized type of the Hook law is: 
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   * Equations (8) represent the 2 dimensional case. If a 3-
dimensional case is treated the equations are 6, and the 
coefficients аin-36. 
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   In the system of equations (8) аin are elastic constants, 
characterizing the matrix (compacted gravel prism). As it is 
assumed (the third precondition from IV) that the matrix is 
arthotropic, these two coefficients, based on the theorem for 
interaction of operations and calculations (Федосьев В., 1965), 
are two by two equal. 
 
   In the Hook law a substitution is done in the conditions of 
equilibrium; it is differentiated by “x” and “y” and first and third 
and second and fourth equations are added. 
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   Due to the assumed orthotropic type 
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   Then the first equation acquires the type by 1’ 
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   Or 
   Similarly, equation (2) acquires the type by 2 ‘ 
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   Or the system of equations for equilibrium (6) acquire the 
type of (9) 
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   On the other side the generalized Law of Hook (Kisliakov S., 
1980; Федосьев В., 1965 etc.) for the two-dimensional 
problem acquires the type of (10) 
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   where: μх, μу – coefficients of Poisson for interrelating 
transverse and lengthwise deformations; 
Gxy- second modulus (modulus of Young of shearing. 
 
   The first equation of (10) is multiplied by μу and is added to 
the second, and the second is multiplied by μх and is added to 
the first. After certain transformations (6) and (10) acquire the 
type as shown in (11): 
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   The comparison of the system (11) and the system (1) from 
the basic model of Manevich – Pavlenko (Manevich L. et al., 
1982) and the system (9) gives a reason to state, that: 
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expresses the reduced module of elasticity of the matrix on “у”; 

- 
33 xya G  in the basic model is indicated by G and 

expresses the reduced second modulus (of shearing) of 
Young; 
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   Through the accomplished transformations and conclusions 
it is determined the applicability of the system of equations (1) 
from the basic model for the task. It remains to reason also the 
constituition of the third equation – (2) from the basic model. 
Considerations are as follows: 
 
   If accepted that the fiber in the modulus is subordinated to 
the Law of Hook for uni-dimensional stress state – tensile 
strength. Then the stress is: 
 

 12х

P

F
 

 
   where F – the surface of the fiber. 
 
   The stress according the complete Law of Hook is expressed 
by (14) and (8) 
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however 

 12. 0 14ууа  

 
   (15) comes after the uni-dimensional condition of the fiber 
 
Then 
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   (16) following of а13=а31 because of the orthotropic type 
(third basic precondition of VI) 
 
   Therefore the tension in the fiber can be expressed yet by: 
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  But from the theoretical mechanics and tensile strength 
(Kisliakov S., 1980; Федосьев В., 1965 etc.) and the already 
applied equations(7), is known that:  
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   On the other hand, the basic model of Manevich – Pavlenko 
(Manevich L. et al., 1982) treats a condition in which the 
extracted fiber is still in balance. In the same time by the 
conclusion (11) 
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   In this case by the reason of single-dimensionality of the 

extracted fiber 
у =0, i.e. 
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   Considering the third equation (2) from the basic model in a 
different way and treating the second basic precondition for the 
components of the vector Z for displacement along axes х and 
у, and subsitute W (displacement) with its component  and 
comply from (22), that from (13) the surface F should be 
added, then finally (2) is represented as: 
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   Therefore, it is assumed for a moment, that the left side of 
(22) is obvious and the right-handed part should be made 
clear. 
 

   There is the product F0δ(x), where F0 is the extracting force, 
and δ(x) is delta function of Diraque. The delta function in this 
case is initiated in order to indicate the characteristics of the 
force. It [δ(x)] is a generalized function. It does nor have any 
physical meaning. It shows only, that the force is applied in a 
point (point force) and that it changes from zero to a certain 
value. Exactly, that final value brings to extraction. Changing 
from zero to the final value is subordinated to the law 
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   The geometrical interpretation is shown in fig.  6. 

 
Figure 6. Geometrical interpretation of the integral from delta 

function of Diraque 
 

   One of the properties of δ(x) is that its sub-integral surface is 
always one. This allows the treating of a series of δ(x) of 
constantly narrowing interval to characterize the change of 
force from zero to a certain value, in which the extraction takes 
place.  Therefore, the presence of δ(x) in the right-hand side of 
the equation (22) does not change the force, it only 
characterizes it. 
 
   The physical sense of the last member of the right-hand of 
the equation (22) needs to be explained. Considerations are 
as follows: 
The equation 
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is in fact another type of the Newton’s law, usually represented 
in the type (25). 
 

 . 25F m a

 
   However, from the mathematical physics (Armanovich J. et 
al., 1969; Genchev T., 1976; Mechanical engineering 1982-
1994; Academy of Science of the USSR, 1971—1982; 
Russian Academy of Science, 1985-1999 etc.) is known, that 
the completeness of this law includes also the strength of 
medium, where movement takes place (in this case – the 
extracted fiber) and its inertness. 
 
   If W denotes the coordinate and t the trajectory of the points 
of the fiber with the time and there is no strength, then the  
Newton’s law is as follows (26) 
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 ''. 26mW F

 
where W is movement of points from extracted fiber. 
  
   Since the fiber is moving only along a straight line, the 
movement of a point from the fiber is a movement along a 
straight  line, in fig. 7. 
 

 
Figure 7.Geometrical representation of a uno-dimensional 

displacement of points of the fiber for time Δt 
 

   In the most general case the law is non-linear, because it 
depends on the time t, displacement W and its second 
derivative. A linear solution is needed, because the 
mathematical physics suggests typical solutions. 
 
   Supposing that F depends linearly of displacement W and its 
first derivative W ‘, a formal mathematical record of this 
dependence is as follows: 
 

       ' ' '

1 2 1 2
, , , , , , 27F W W W t F W W t F W W t  

 
   That means that 
 

 1 2 28W W W 

 
   When a function depends linearly on its first and its second 
argument, the solution may be presented in the following 
description: 
 

     ' '

1 2, , 29,F W W t C W C W F t  

 
   Where С1 and С2 are known integral constants. 
 
   Then the Newton law in the treated case is: 
 

     '' '

1 2 3 30. . . .С W С W С W F t x  

 
The physical meaning of the constants is as follows: 
С1 – characterizes the mass of the fiber; 
С2 – characterizes the strength (contact strength) of outside 
medium (matrix), in which fiber moves; 
С3 – characterizes inertness of moving fiber. 
 
   The physical meaning of these constants most clearly is 
illustrated and explained by one of most simple problems in 
mechanics – the pendulum (fig. 8). 
 

 
Figure 8. а) Schematic view of a waver, set in motion by a 

force F and displaced at  W b) Response of pendulum motion 
with time 

 
   Four cases are possible: 
 
First case: Medium does not have any strength, force is 
applied only once. 
 
   In this case the equation of the pendulum is: 
 

     '' 2. . . 0 31W t W t 

 
   Solution of the differential equation (31) is: 
 

   1 2.cos. .sin. 32W t C t C t  

 
Here Ci are constants and depend on А (the amplitude) and φ 
(the phase), and ω is frequency. 
 
Second case: Medium does not have any strength, the force 
F0 acts permanently according to a cosine law. 
 
   The equation of the pendulum is: 
 

     '' 2

0 1. . . .cos 33W t W t F t  

 
Solution for the differential equation (33) is: 
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1 2 12 2

1
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F

W t C t C t t  
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   In this case when ω1=ω there is a resonance. 
 
Third case: Medium has a strength, the force is applied only 
ince. 
 
   The equation of the pendulum is: 
 

       '' '' 2. . . . . 0 35W t аW t W t  

 
If there is a linear dependence between displacement “W ‘ and 
time t, then solution depends on the characteristic equation 
(36): 
 

 2 2 0 36а    

 
    The discriminant D of (36) is: 
 

 4 37D a  
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   The solution of (35) has a physical sense, when the 
discriminant D is negative, i.e. D<0.  Then solutions of the 
characteristic equation (36) are: 
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   and it is presented as (39): 
 

 1,2 . 39i   

 
   Then solution of the equation of pendulum (35) is: 
 

     . .

1 2. .cos. .. .sin. 40t tW t C е t C е t t    

 
   This is the case of gradual attenuation of amplitude and 
frequency – fig. 9. 
 

 
Figure 9. Gradual attenuation of amplitude and frequency of 

the pendulum 
 
Fourth case: Medium has its own strength, the force F0 acts 
according to a cosine law. 
 
   The equation of pendulum is: 
 

       '' ' 2

0 1. . . . . .cos 41W t aW t W t F t   

 
   Without paying attention of the solution of (41), and if 
analyzing it and assuming, that the mass of pendulum is 
normed to one, then there is a full similarity with the law of 
Newton and the model of Manevich-Pavlenko (Manevich L. et 
al., 1982) for the extracted fiber. Furthermore,: 

а) the coefficient before the second derivative of 
displacement W’’ is one. In the basic model this coefficient is 
F.Exx. 
b) the coefficient in front of the first derivative shows the 
strength of medium, in which the pendulum moves. In the 
general case this is a strength of friction. 
  

   In the basic model of Manevich-Pavlenko this is a contact 

strength of medium round the fiber. It is indicated by t(x) and 

it is transferred to the right-hand side of the equation, because 
it always counteracts to extracting force. The value of 

coefficient in front of t(x) is 2, because it is assumed that it 

acts simultaneously from the both sides of the fiber  –    fig. 10. 
 

 
Figure 10. Illustration of contact stress t(x) 

 
c) The coefficient ω in front of displacement W(t) stands for 

inertia of the process, which on its own depends on 
weight of the moving mass. 

 
   At the basic model the coefficient С3 is zero, because the 
authors Manevich and Pavlenko (Manevich L. et al., 1982) 
presume, that uni-dimensional fiber is weightless. Finally, the 
equation in the basic model acquires the type (2), and namely: 
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   This does not comprise all the peculiarities of genesis of 
the basic model. This is because in order to function, the 
three equation [system (1) and equation (2)] in one model, 
it is necessary to associate the system for equilibrium of 
the matrix (1) and the equation for movement of fiber into a 
dependence.  
 
   This connection of the model (Manevich L. et al., 1982) is 
formulate by the assigned relation (42). 
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   It defines, that the contact stress in the direction y=0 is 
proportional to the reduced second modulus of Young of the 

matrix. The higher G, the higher t(x). 

 
   The G is just the coefficient  а33 of the matrix. 
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   In other words, the contact stress is proportional to the 
elastic modulus of shearing of the matrix and, the inverse 
proportional to the difference (1-μx.μy) , where μx. and μy are 
coefficients of Poisson for already compacted gravel bed onto 
axes х and у. 
 
 

RESULTS AND CONCLUSIONS 
 

   BASIC CONCLUSION is, that the third equation (2) of the 
basic model does not concern and does not affect by the type 
of strength, which medium (matrix) effects to the extracted 
fiber – friction, shearing, shearing of adhesion, shearing of 
friction etc. The equation only reports on the quantity of 
strength of medium (matrix) while extracting of the fiber. Just 
for that, the authors of the model define it as a “contact” and 
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have in mind, that it is manifested and effected simultaneously 
from both sides along the whole length of extracted fiber.  
 
   THE BASIC RESULT is in the proof of the correctness of 
application of the model, developed by Manevich and 
Pavlenko for determination of strength, which is applied to an 
extracted traverse (treated as a fiber) from the side of the 
gravel bed (treated as a matrix) from a movable railroad. 
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