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ABSTRACT 
By means of a fixed point approach an existence theorem for neutral equations arising in transmission lines is proved. 
 

   The present paper continuous investigations on losless 
transmission lines equations with nonlinear resistive elements. 
   In a previous paper [1] we have studied neutral equations 
([2]-[4]) with nonlinearities caused by a nonlinear IV   

characteristic which is of polynomial type. Here we consider an 
initial value problem for neutral equations with an exponential 
nonlinearity in the right-hand side. Such a problem is 
equivalent (cf. [5]-[7], [2]) to an initial-boundary value problem 
for linear hyperbolic system with a nonlinear boundary 
conditions. Indeed in some cases the approximation of the 

IV   characteristic curve generated by the diffusion current 

in semiconductors [8]-[9] can be fitted by an exponential 
function. The relation between the diffusion current and the 

voltage is of the type )1()(  uAeui , where A  and   

are constants. It is known that such type nonlinearities have 
also another applications (cf. [10], [11]).   
 
   Therefore formulating the initial value problem 
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   we have to impose such conditions on the right-hand side of 
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nonlinearities. For instance F  can be chosen of the type 
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   We reduce the problem (1) to the following one (putting 
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   We make the following assumptions )(C : 

 

   (C1)  functions 11:)(),( RRtt si     

 

),...,1;,...,1( nsmi   are continuous and  

0)( 0  tt i , 0)( 0  tt s  for some constants  

0 , 0 . 
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11 :),...,,,...,( RRvvuuF nm

nm   
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where BA,  are positive constants. 
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where 1A  and 1B  are positive constants. 
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   Theorem 1. Under assumption )(C  the initial value problem 

(2) has a unique continuous solution. 
 
   Proof. Consider the set X  consisting of all continuous 

functions 1
0 ],0[:)( RTtf  , )0( 0 T  whose restrictions on 

]0,(  coincide with )(t . It becomes a uniform space 

endowed with the following saturated family of pseudometrics 
(metrics) (cf. [13]-[14]): 
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   Introduce the following subset M  of X : 
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where 0P  is a constant which does not depend on f . It is 

easy to see that M  is bounded and closed set. Define the 

operator ),(),(: AA XXT   by right-hand side of (2): 
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   Obviously ))(( tTf  is a continuous function. 

 
   In what follows we show that T  maps the set M  into itself. 

Indeed let Mf  . Then in view of )3(C  we have 
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   It is know that for 20 w  we have: 
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   It remains to show that T  is contractive operator. Indeed for 

every f  and Mf   and in view of the inequalities 
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   Consequently 
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   But for sufficiently large   the expression in the bracket is 

smaller than 1 (if 000 T ) and therefore T  is contractive 

operator. 
 
   Finally we have to choose an initial approximation. Indeed let 
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   Therefore T  has a unique fixed point which a solution of (2).  
   Theorem is thus proved. 
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