50 years University of Mining and Geology “St. Ivan Rilski”
Annual, vol. 46, part lll, Mechanization, Electrification and Automation in Mines, Sofia, 2003, pp.201-203

ON THE NEUTRAL LOSSLESS TRANSMISSION LINE EQUATIONS WITH TUNNEL DIODE
AND A LUMPED PARALLEL CAPACITANCE

Vasil Angelov

University of Mining and Geology “St. Ivan Rilski”
Sofia 1700, Bulgaria
E-mail: angelov@staff.mgu.bg

ABSTRACT

By means of a fixed point approach an existence theorem for neutral equations arising in transmission lines is proved.

The present paper continuous investigations on losless
transmission lines equations with nonlinear resistive elements.

In a previous paper [1] we have studied neutral equations
(2]-[4]) with nonlinearities caused by a nonlinear V —I
characteristic which is of polynomial type. Here we consider an
initial value problem for neutral equations with an exponential
nonlinearity in the right-hand side. Such a problem is
equivalent (cf. [5]-[7], [2]) to an initial-boundary value problem
for linear hyperbolic system with a nonlinear boundary
conditions. Indeed in some cases the approximation of the
V —1 characteristic curve generated by the diffusion current
in semiconductors [8]-[9] can be fitted by an exponential
function. The relation between the diffusion current and the

voltage is of the type i(u) = (Ae™ —1), where A and a

are constants. It is known that such type nonlinearities have
also another applications (cf. [10], [11]).

Therefore formulating the initial value problem
U(t) = FU(Ag, () U(A gy, (0), Uy, O Urn (1), £>0

u(t) =), t<0
u@® =), t<0,

(1)

we have to impose such conditions on the right-hand side of
(1), F(uqg,..., Uy, Vq,.ery V), in order to include exponential
nonlinearities. For instance F can be chosen of the type

n n
F(Ug e Uy Voo V) = A (€% 1) + B v
k=1 s=1

We reduce the problem (1) to the following one (putting
y(t)=u(t) for t>0and wy(t)=¢(t) for t <0 assuming

¢0)=0):

201

A () Aq (1)
YO=F [y@du.. [y@d Y00 V) [ tel0T]
0 0

y(t) = w(t), t<0. (2)

We make the following assumptions (C) :
(C1) functions A (t),vs(t): Rt > R?

(i=1..,m;s=1..,n) are continuous and
t—Aj(t)>Ag >0, t—ys(t) =y >0 for some constants
Ag, Yo-

(C2) the functions F(Uy,..., Uy, Vq,.., V) : RMTM — R

and \y(.):Rf—)R1 are continuous and satisfies the
condition

A1(0) An(0)
vO=F [w)ds... [w(s)ds (). v(r(0) |=
0 0

=F(0,...,0,y(0),..., w(0)).

n n
(C3) | F(Ugyem Uy Voo Vi) [S A €K 114 B | vg |

k=1 s=1
where A, B are positive constants.
(C4) | F (U Up V1o V) | = | F (T, Uy Uy Ve, V) S
m _ n
<A Y ek — etk |4 B Y |vg — Vg |

k=1
where Ay and B; are positive constants.

s=1
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m
(C5) AZMHIBSL where Py >0 is chosen
i 2~ loy [ReTo

such that | oy | PyTp < 2.

Theorem 1. Under assumption (C) the initial value problem
(2) has a unique continuous solution.

Proof. Consider the set X consisting of all continuous
functions f(t):[0,Ty] > R, (To > 0) whose restrictions on
(-0,0] coincide with y(t). It becomes a uniform space

endowed with the following saturated family of pseudometrics
(metrics) (cf. [13]-[14]):

/ :{px(f, ?):XE[O,w)},

p(f. F) =supe™ | ()~ F(@) bt <[0. T,
Introduce the following subset M of X :

M ={f()e(X,.2)] f(t)|< Py, t[0,Tol},
where Py is a constant which does not depend on f . It is

easy to see that M is bounded and closed set. Define the
operator T : (X, ) — (X, .«) by right-hand side of (2):

M (t Ay (t

F Seer | £(8)dS, F(yg () F(vn (1) | t€0,To]
WOE { { ”
y(t), t<0.
Obviously (Tf)(t) is a continuous function.
In what follows we show that T maps the set M into itself.

Indeed let f € M . Then in view of (C3) we have

Ak (1)
o [f(s)ds

M) AY e © ~1+BY | fys®) <
k=1

s=1

k=1

. { Ai (o PINO g), anol |

It is know that for 0 <w< 2 we have:

2 3 2

woow wo(w 2w
eV =W —t— A <W I — 4| = | 4o |=——.

203 2 \2 2-w

Therefore

Ay (1)
o j f(s)ds
0

<[ oy [Py [ Ak (t) [ o [ PoTo

and then

2|y | PyT,
AZ (@O gy gy |< AZMH]BPO <p,,
& 12- oy | PyTg

2|ay [To

provided AZ +nB <1 whichis (C5).

2-|oy [To

It remains to show that T is contractive operator. Indeed for
every f and f €M and in view of the inequalities

| o | PoAk (1)
A

t—Ag 2 Ag(t) > (for  sufficiently large

A>0) = —At+| oy | PhAK (1) < -AAg
we have for t €[0,Ty] for which Ay (t)>0:

Ak (t) Ak (1)

o [f(s)ds oy jf(s)ds

| (TF)(t) - (Tf(t)|<A12 0 —e +
+By Y| fys ) — f(vs) I

s=1

Ak (t)

m a [ Fs)ds|a, (1) A(t)
<A lagle O [f(s)ds— [ f(s)ds+

k=1 0 0

+ Blie*”s“ﬂ Flrs @) - Frs@))e™=® <
s=1

<A12|0, |eUkP0 k(t)

k=1

j e}‘stpk(f f)+

n -
+B, > e Wp, (f,f) <
s=1

D _q
»

+
k=1

m
< ext[Alzl o |e—M+akPoAk(t)

n —_
+ Blzem“‘“(t)}px(f, f)<
s=1

oMo ght

<eMp, (1, f){Alzmu +Byne” 0}
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m

Ale—kAoekTo Zl ak |
<eMp, (f, 1) - k=l | gne Mo
Consequently
ATo—AAg

€

Py, (TF, TF) < {HZIWI +nBie0 oy (£, 7).
k=1

But for sufficiently large A the expression in the bracket is
smaller than 1 (if Tg —Ag < 0) and therefore T is contractive
operator.

Finally we have to choose an initial approximation. Indeed let

CJw()t<0
%)= {W(O),t >0’

Then

0,t<0
| (X))~ %o ) |={ ‘=

| F(O....,0,y(0),..., w(0)) |t >0

Themap j: A— Ainthiscaseis j(A)=A=
= ) =1, ie.

P 5 %0 T0) I F 0, 0, W(0), w(O)) [ 0 (k =12,..)

Therefore T has a unique fixed point which a solution of (2).
Theorem is thus proved.
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