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INTRODUCTION 
 

   It is known that in the theory of nonlinear circuits IV   

characteristic curve can be approximated by various nonlinear 
functions (cf. [1]-[3]) - polynoms, exponential functions, 
hyperbolic functions and their combinations. In [4]-[7] the 
authors in their endevour to investigate the lossless 
transmission lines considers the hyperbolic system 
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where ),( xtii  , ),( xtuu   are the current and the voltage 

respectively, while L  is the series inductance, and C  is the 

parallel capacitance per unit length of the line. The line is 

shorted at 0x  which implies 0),0( tu  and it is 

connected with a nonlinear element (for instance tunnel diode) 

at lx   ( l  is the length of the line), that is, 

)),((),( Etluftli  , where E  is the bias voltage, and 

)(VfI   is the IV  characteristic curve. In many cases 

)(Vf is third degree polynom of the type 3)( VaVVf   

(cf. [4]-[7]) or polynom of higher order  [1], [2]. If the parallel 

capacitance 0C  is considered in the circuit the above 

boundary value condition becomes 
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   Then the mixed initial-boundary problem for system (1) can 
be replaced by a pure initial value problem for a functional 
differential equation of neutral type ([4]-[7]) while in the first one 
obtains only functional equations. The general theory of neutral 
equations can be found in [8]-[11] but the polynomial 
nonlinearities only in particular cases are considered [4]-[7]. 
 
   The main purpose of the present paper is to formulate 
conditions for the existence and uniqueness of solutions of 

neutral functional differential equations with polynomial 
nonlinearities in the right-hand sides in general case. Our 
investigations are based on fixed point approach obtained in 
[12]-[13]. 
 
   Let us consider an initial value problem for the neutral 
functional differential equation of first order 
 

0)),((),...,((),((,...,)),((()( 11  ttutututuFtu nm  , 

0),()(),()(  tttuttu    (2) 

 

where 1
11 :),...,,,...,( RRvvuuF nm

nm   , 

 
11:)(),( RRtt   , ]0,(),,0[ 11   RR , 

 
11:)( RRti    ),...,2,1( mi  ,  

 
11:)( RRtk    ),...,2,1( nk   are prescribed functions. 

 
   Usually when one look for global solution of (2) F  has to 
satisfy the condition of the type  
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   Our goal is to include in the consicleration the right-hand 
sides of general type: 
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where k
l

s baa ,, )(  are prescribed constants. 

   The equations obtained in [4] - [7] are particular cases of (4): 
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where g
z

KC ,
1

,,0  and h  are prescribed constants. 

 
 

EXISTENCE THEOREM 
 

   As usually we put )()( tuty   for 0t  and )()( tt    

for 0t . Then (2) becomes assuming 

0)0()0( y ):
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   Indeed )()()( 0000 tttutty   satisfies  

Condition 
s  

0)()()0( 0000  tuttyy  and  

 

))(,)((0)()0( 000000  tututuy . 

 
   Theorem 1. Let the following conditions be fulfilled: 

1.1 Functions 
1.2  

11:)(),( RRtt ki   ),...,1;,...,1( nkmi    

 

are continuous and 0)0(  i , 0)0(  k , and  

 

0)( 0  tt i , 0)( 0  tt k , 

 

where 0  and 00   are constants; 

 
1.3 the function 

1
11 :),...,,,...,( RRvvuuF nm

nm    

is continuous and satisfies the conditions: 

1.3.1 )()( tt    is continuous and satisfies conformity 

condition 
1.3.2  
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where 1a  and 2a  are positive constants; 

1.2.3 
 |)~,...,~,~,...,~(||),...,,,...,(| 1111 nmnm vvuuFvvuuF
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Тhen (5) has a unique continuous solution. 
 
   Proof. Consider the set X  of all continuous functions 

1
0 ],0[:)( RTtf  which coincide with )(t  for 0t . 

 
   Introduce a family of pseudometrics  
 

A  ),0[:)
~

,(   ff , where  
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   Recall that for 0t  )()( ttf   and )()(
~

ttf  . 

 
   Then the set X  endowed with the family A  becomes a 

uniform space ),( AX .  

 
   Introduce the set  
 

 fM { ),( AX ]},0[,|)(:| 0TtAetf t   , 

 

where A  is a fixed constant which does not depend on f . 

 

   It is easy to verify that ))(( tTf  is a continuous function on 

1R . 
 
   First we show that the operator T  defined by the right-hand 
side of (5) is contractive: 
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Indeed for every Mff 
~

,  we have ],0[ 0Tt  for which 
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   We multiply the previous inequality with te   and then 
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For sufficiently large   one can see that 1)( B  provided 

000 T . This implies that T  is contractive. 

 

   We show Mf     MTf  . Indeed ( 0k ): 
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   Multiply the last inequality te  : 
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which is always satisfied for sufficiently large   and 

000 T . 

   In order to be satified all conditions of the fixed point theorem 

[12] we have to find such an element 0x  that 
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   Here the map AAj :  (cf. [12]) is )(j . One can 

choose 0x   
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   Then we obtain 
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   The last supremum exists because  
 

|||)(| 0 tti  and consequently 
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   Therefore T  has a unique fixed point [12], which is a 
solution of (5). 
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