# **ORGANIZATIONS AND MANUFACTURERS IN FIELD OF LASER**

# **Miroslav Radovanovic**

University of NIS Faculty of Mechanical Engineering

### ABSTRACT

Today. laser make up a multi-billion EUR industry. Industrial manufacturers have developed innovative ways to use lasers to increase manufacturing efficiences and product quality. At present time every year over 3000 laser machines for industrial application are installed in the world. In many countries they are formed laser associations or organizations. These laser associations or organizations assist the manufacturing industries by providing technical, product and service information. All of these associations and organizations promote lasers and laser applications. Web-sites of laser associations and organizations contain: news, promote of lasers, industrial product catalogs and links, laser applications and safety, a list of events and a directory of services. Many of these associations and organizations support research in laser technology on a non-profit basis. They are several manufacturers of lasers, and many manufacturers of laser machines and equipments.

### INTRODUCTION

Laser is undoubtedly the most promising and constructive invention of the second half of the 20<sup>th</sup> century. The laser is a young invention and it has found a wide rande of applications in all the sectors such as telecommunications, measurement techniques and the processing of metal and non-metal materials. The laser have been accepted globally by the engineering sector as an accurate and economical product. Laser based technologies are increasingly accepted as a competent substitute in component manufacturing on account of improvements in efficiency, quality and productivity at affordable cost. Laser processing is fast becoming essential in nearly all manufacturing industries. Today. laser make up a multi-billion EUR industry. At present time every year over 3000 laser machines for industrial application are installed in the world.

The first laser, a ruby laser, was invented 1960 by T. Maiman, the first He-Ne laser was invented 1961 by A. Jovan, D. Herriot and W. Bennett, the first Nd:YAG laser was invented 1964 by Geusic, the first CO<sub>2</sub> laser was invented 1964 by C.K.N. Patel, the first excimer laser was invented 1976. The first industrial application of a laser was making holes in diamonds used a beam from ruby laser. Since that beginning, the use of laser technology has continued to be an impressive and successful story. The term LASER is an acronym for Light Amplification by Stimulated Emission of Radiation. A laser is a cavity, with mirrors at the ends, filled with material such as crystal, glass, liquid, gas or dye. It is a device that produces an intense beam of light with the unique properties of coherence, collimation and monochromaticity. Typical lasers use electricity to create coherent light. Laser light can be different colors of the visible light spectrum, or can be invisible when the light is ultraviolet or infrared.

From laser surgery to CD players and grocery-store checkout scanners, our daily lives are enhanced by a basic discovery that was originally thought by some to have no practical uses

whatsoever. Lasers are used in almost all important sectors of industry, such as automotive industry, electrical industry, metal-working industries and others. In USA, the automotive industry and the metal-working industries are the biggest customers for lasers. In Asia, the electrical and semicondustor industry is the laser supplier's most important customer. In Europe, the metal-working industry and automotive industry are the biggest customers for lasers. Typical areas for applications of lasers are: printing technology, soldering, marking, drilling, cutting non-metals, cutting metals, sintering, heat condition welding, polymer welding, welding metals, hard soldering, hardening, heating, brazing, clading. Some of these applications can be performed by lasers alone, but for many the justification is purely economic. For many applications, laser processing is the most precise, economical method available. For some, laser processing is the only method. Given the speed, flexibility and precision of laser processing, the cost savings are dramatic and the payback rapid.

In Germany, in 1989. year, it is investigated in laser equipment 804.5 milion EUR. From this in laser equipment for: material processing 222.5 milion EUR, research and development 143 milion EUR, information technique 141.5 milion EUR, communication 135 milion EUR, medecine 118 milion EUR, measure technique 34.5 milion EUR and printer technique 10 milion EUR. Figure 1 shows the percentages of invetigation in laser equipment.



Figure 1. Percentages of invetigation in laser equipment

Many types of lasers have been developed, but very few may be employed in a practical sense by industry. In laser equipment it is instaled: semicondustor lasers 30%, CO<sub>2</sub>-lasers 22%, solid-state lasers 17%, ion lasers 13%, He-Ne lasers 7%, excimer lasers 4%, dye lasers 3% and other lasers 4%. Figure 2 show the percentages of instaled lasers.



Figure 2. Percentages of instaled lasers

The two most commonly used lasers are the  $CO_2$  lasers and the Nd:YAG lasers. It is probably fair to say that of these two,

the  $CO_2$  laser is the most versatile. Today, there is no doubt that the  $CO_2$  laser is the most useful on for metalworking.

### LASER ASSOCIATIONS AND ORGANIZATINS

In many countries they are formed laser associations or organizations. They assist the manufacturing industries by providing technical, product and service information. All of these associations and organizations promote lasers and laser applications. Web-sites of laser associations and organizations contain: news, promote of lasers, industrial product catalogs and links, laser applications and safety, a list of events and a directory of services. Many of these associations and organizations support research in laser technology on a nonprofit basis. In table 1 is shown some of these associations and organizations and their web-sites. In table 2 are shown laser institutes, in table 3 are shown laser centres, and in table 4 are shown laser laboratories.

| Table 1. Laser associations and organizations | Table 1 | Laser | associations | and | organizations |
|-----------------------------------------------|---------|-------|--------------|-----|---------------|
|-----------------------------------------------|---------|-------|--------------|-----|---------------|

| No | Laser associations                                                  | Web-site          |
|----|---------------------------------------------------------------------|-------------------|
| 1  | American Welding Society (AWS)                                      | www.aws.org       |
| 2  | European Laser Applications Network (ELAN)                          | www.ailu.org.uk   |
| 3  | International Laser Display Association (ILDA)                      | www.ilda.wa.org   |
| 4  | International Society for Optical Engineering                       | www.spie.org      |
| 5  | Japan Laser Processing Society (JLPS)                               | www.jlps.gr.jp    |
| 6  | Laser and Electro-Optics Manufacturer's Association (LEOMA)         | www.sfo.com       |
| 7  | Lasers and Laser Engineering                                        | www.lasers.org.uk |
| 8  | Optical Soc. of America (OSA)                                       | www.osa.org       |
| 9  | Optronics Ireland                                                   | www.tcd.ie        |
| 10 | Russian Federal Research Center RAMET                               | www.girmet.ru     |
| 11 | The Association of Industrial Laser Users                           | www.ailu.org.uk   |
| 12 | The Entertainment Laser Association                                 | www.ela.org.uk    |
| 13 | The International Society for Optical Engineering (SPIE)            | www.spie.com      |
| 14 | 4 The Laser & Electro-optics Manufacturer's Association (LEOMA) www |                   |
| 15 | UK Laser and Electro-Optics Trade Association                       | www.ukleo.org     |

| No | Laser institute                                                    | Web-site                  |  |
|----|--------------------------------------------------------------------|---------------------------|--|
| 1  | Arizona State University – MEMS                                    | www.eas.asu.edu           |  |
| 2  | Beckman Laser Institute                                            | www.bli.uci.edu           |  |
| 3  | Columbia University – MRL                                          | www.mrl.columbia.edu      |  |
| 4  | Edison Welding Institute (EWI)                                     | www.ewi.org               |  |
| 5  | Fraunhofer Institute for Laser Technology (ILT)                    | www.ilt.fhg.de            |  |
| 6  | Institute of Optics – Rochester                                    | www.optics.rochester.edu  |  |
| 7  | Institute of Electronic Structure and Laser (IESL)                 | http://safety.web.cern.ch |  |
| 8  | ISLT TU Vienna                                                     | www.tuwien.ac.at          |  |
| 9  | Laser Institute of America (LIA)                                   | www.laserinstitute.org    |  |
| 10 | Laser Palace – Lawrence University                                 | www.pkal.org              |  |
| 11 | Rice University – Laser Science                                    | www.ruf.rice.edu          |  |
| 12 | Rockwell Laser Institute                                           | www.rli.com               |  |
| 13 | The Welding Institute (TWI)                                        | www.twi.co.uk             |  |
| 14 | UMIST University of Manchester Institute of Science and Technology | www.me.umist.ac.uk        |  |
| 15 | University of Twente (WB)                                          | www.wa.wb.utwente.nl      |  |
| 16 | University of Wisconsin                                            | www.engr.wisc.edu         |  |
| 17 | University St Etienne                                              | www.univ-st-etienne.fr    |  |
| 18 | Lund university – Lund laser centre (LLC)                          | www.llc.fysik.lth.se      |  |
| 19 | Masquarie university – Centre for lasers and applications          | www.mpec.mq.edu.au        |  |
| 20 | Oklahoma State University – Laser Center                           | www.okstate.edu           |  |

### Table 2. Laser institute

#### Radovanovic M. ORGANIZATIONS AND MANUFACTURERS IN FIELD OF LASER

| 21 | Umea University – Laser Physics Group                  | www.phys.umu.se             |
|----|--------------------------------------------------------|-----------------------------|
| 22 | Lulea University of Technolofy                         | www.mb.luth.se              |
| 23 | Michigan state university-MSU laser laboratory         | http://photon.cern.msu.edu  |
| 24 | Optics and Laser Group, Adelaide University, Australia | www/physics.adelaide.edu.au |
| 25 | tsinghua University                                    | www.tsinghua.edu.cn         |

# Table 3. Laser centres

| No | Laser centres                                          | Web-site                     |
|----|--------------------------------------------------------|------------------------------|
| 1  | Australian National University Laser Physics Centre    | http://laserspark.anu.edu.au |
| 2  | Center for Research and Education in Optics and Lasers | http://lorien.creol.ucf.edu  |
| 3  | Fraunhofer Center for Laser Technology (CLT)           | www.clt.fraunhofer.com       |
| 4  | Laser Physics Centre ANU - Canbera                     | http://laserspark.anu.edu.au |
| 5  | Laser Science Centre - Queensland                      | www.physics.uq.edu.au        |
| 6  | Laser Spectroscopy Center – Wisconsin at Madison       | www.chem.wisc.edu            |
| 7  | Laser zentrum Hannover                                 | www.lzh.de                   |

#### Table 4. Laser laboratories

| No | Laser laboratories                                 | Web-site                     |
|----|----------------------------------------------------|------------------------------|
| 1  | Bell laboratories                                  | www.bell-labs.com            |
| 2  | Lapeeuranta University of Technology               | www.lut.fi                   |
| 3  | Laser and Electro-Optics Research Laboratory (BYU) | www.ec.byu.edu               |
| 4  | Laser Laboratory – Hope College                    | www.chem.hope.edu            |
| 5  | Laser Laboratory – Hunter College                  | www.ph.hunter.cuny.edu       |
| 6  | Laser Laboratory – Lawrence College                | www.lawrence.edu             |
| 7  | Laser Laboratory – Lynchburg College               | www.lynchburg.edu            |
| 8  | Laser Laboratory – Western Maryland College        | www.wmc.car.md.us            |
| 9  | Laser Optics&Spectroscopy Group                    | www.lsr.ph.ic.ac.uk          |
| 10 | Lawrence Berkeley National Laboratory              | http://efssun.lbl.gov        |
| 11 | Penn State's Applied Research Lab.                 | www.arl.psu.edu              |
| 12 | Semiconductor Laser Laboratory                     | http://sll.ccsm.uiuc.edu     |
| 13 | Ultrafast Laser Laboratory (BNL)                   | www.inst.bul.gov             |
| 14 | Berkelet-Laser Manufacturing Laboratory            | http://enler.me.berkeley.edu |

# LASER MANUFACTURERS

There are several manufacturers of lasers, and many manufacturers of laser machines. In table 5 are shown manufacturers of lasers. Industry leaders of laser manufacturers are: Coherent Laser Group, Ferranti Photonics, Rofin-Sinar, Spectra-Physics and Trumpf. Laser machines are product of high technology. They present complexe hardware and software equipment. Manufacturers of machines incorporate laser, optical system for laser beam transmission, and processing head in mechanical machines with CNC unit and build laser machines. In table 6 are shown the most known manufacturers of laser machines and their web-sites. Industry leaders of laser manufacturers are: Amada, Bystronic, Cincinnati, ESAB, Hahn%Kolb, Lumonics, Mazak, Messer. Prima Industrie, Rofin, Salvagnini and Trumpf.

Table 5. Laser manufacturers

| No | Laser manufacturers        | Web-site                  | No | Laser manufacturers    | Web-site                |
|----|----------------------------|---------------------------|----|------------------------|-------------------------|
| 1  | Aculight                   | www.aculight.com          | 23 | Melles Griot           | www.mellesgriot.com     |
| 2  | Alpha Lasers               | www.alphalas.com          | 24 | Metrologic Instruments | www.metrologic.com      |
| 3  | Big Sky Laser Technologies | www.bigskylaser.com       | 25 | Optlectra              | www.optlectra.com       |
| 4  | Blue Sky Research          | www.blueskyreseach.com    | 26 | Opto Power Corporation | www.optopower.com       |
| 5  | Bonneville Technologies    | www.bonnevilletech.com    | 27 | Oxford Lasers          | www.oxfordlasers.com    |
| 6  | Cilas                      | www.cilas.com             | 28 | Parallax Technology    | www.parallax-tech.com   |
| 7  | Coherent                   | www.cohr.com              | 29 | Photonics Industries   | www.photonix.com        |
| 8  | Continuum                  | www.ceoi.com              | 30 | Photonics Solutions    | www.psplc.com           |
| 9  | Cutting Edge Optronics     | www.ceolaser.com          | 31 | Positive Light         | www.poslight            |
| 10 | EKSPL                      | www.ekspla.com            | 32 | Power Technology       | www.powertechnology.com |
| 11 | Ferranti Photonics         | www.ferrantiphotonics.com | 33 | PRC Laser              | www.prclaser.com        |
| 12 | Lambda Physik              | www.lambdaphysik.com      | 34 | Q-Peak                 | www.qpeak.com           |
| 13 | LASAG Industrial Lasers    | www.lasag.com             | 35 | Quantronix             | www.quantron.com        |

ANNUAL of University of Mining and Geology "St. Ivan Rilski", vol. 46(2003), part III, MECHANIZATION, ELECTRIFICATION AND AUTOMATION IN MINES

#### Radovanovic M. ORGANIZATIONS AND MANUFACTURERS IN FIELD OF LASER

| 14 | Laser Labs              | www.laserlabs.com    | 36 | Resonetics             | www.resonetics.com          |
|----|-------------------------|----------------------|----|------------------------|-----------------------------|
| 15 | Laser Physics           | www.laserphysics.com | 37 | Rockwell Lasers        | www.rli.com                 |
| 16 | Laser Power Corporation | www.laserpower.com   | 38 | Rofin-Sinar            | www.rofin-sinar.com         |
| 17 | Latronix AB             | www.latronix.se      | 39 | Spectra-Physics        | www.splasers.com            |
| 18 | Lee Laser               | www.leelaser.com     | 40 | Spectron Laser Systems | www.spectron.co.uk          |
| 19 | Lexel Laser             | www.lexellaser.com   | 41 | Synrad                 | www.synrad.com              |
| 20 | Liconix                 | www.liconix.com      | 42 | Trumpf                 | www.haas-laser.com          |
| 21 | Light Solutins          | www.lightsol.com     | 43 | TRW                    | www.trw.com                 |
| 22 | LumenX Technologies     | www.dyelaser.com     | 44 | Unitek Miyachi Lasers  | www.unitekmiyachilasers.com |

#### Table 6. Laser maschine manufacturers

| No | Laser machine manufacturers  | Web-site                  | No | Laser machine manufacturers | Web-site                       |
|----|------------------------------|---------------------------|----|-----------------------------|--------------------------------|
| 1  | Amada                        | www.amada.com             | 28 | Mazak                       | www.mazaklaser.com             |
| 2  | Arnold                       | www.arnold-rv.de          | 29 | Mecanumeric                 | www.mecanumeric.fr             |
| 3  | Baasel Lasertech             | www.baasel.de             | 30 | Messer Cutting Systems      | www.messer-cs.de               |
| 4  | BLM-ADIGE USA                | www.blmgroup.com          | 31 | Mitsubishi Laser            | www.mitsubishi-world           |
| 5  | Bystronic Laser.             | www.bystronic.com         | 32 | Modern Machine Tool         | www.modernmachinetool.com      |
| 6  | Cheval Freres                | www.cheval-freres.fr      | 33 | Motoman                     | www.motoman.com                |
| 7  | Cielle                       | www.ciellecnc.com         | 34 | Omega Laser                 | www.a1.nl/omega-laser-systems/ |
| 8  | Cincinnati Incorporated      | www.cincinnati-tools.com  | 35 | OTO Mills USA               | www.otomills.com               |
| 9  | Convergent Prima             | www.convergentprima.com   | 36 | Photonics Spectra           | www.photonicsspectra.com       |
| 10 | Cutting Edge Optronics       | www.ceo-laser.com         | 37 | Precitec                    | www.precitec.com               |
| 11 | Edwards Pearson              | www.edwards-pearson.co.uk | 38 | Prima Industrie             | www.primaindustrie.com         |
| 12 | Electrox                     | www.electox.com           | 39 | Profile 600                 | www.profile600.co.uk           |
| 13 | Embassy Machinery            | www.embassy-mach.co.uk    | 40 | Pullmax                     | www.pullmax.com                |
| 14 | ESAB                         | www.esab.com              | 41 | Rofin                       | www.rofin.com                  |
| 15 | FANUC Robotics North America | www.fanucrobotics.com     | 42 | RPA Limited                 | www.rpaservices.com            |
| 16 | Ferranti Photonics           | www.ferrantiphotonics.com | 43 | Salvagnini                  | www.salvagnini.it              |
| 17 | Franek Laser&Fab Systems     | www.franeklaser.com       | 44 | SEI                         | www.seispa.com                 |
| 18 | GSI Lumonics                 | www.gsilumonics           | 45 | Sondronic Automotive        | www.sondronic.com              |
| 19 | Haco                         | www.haco.com              | 46 | Strippit/LVD                | www.lvdgroup.com               |
| 20 | Hahn&Kolb                    | www.hklaser-systems.com   | 47 | Thinklaser                  | www.thinklaser.com             |
| 21 | Hana Laser                   | www.hanalaser.com         | 48 | Trotec                      | www.trotec.net                 |
| 22 | Koike                        | www.coikeox.co.jp         | 49 | Trumpf                      | www.trumpf.com                 |
| 23 | Lasag AG                     | www.lasg.com              | 50 | Yamazaki Machinery UK       | www.mazakeurope.com            |
| 24 | Lasercut                     | www.lasercutinc.com       | 51 | Universal laser systems.    | www.ulsinc.com                 |
| 25 | LPKF Laser&Electronics       | www.lpkf.com              | 52 | Virtek Industrial Laser     | www.virtek.ca                  |
| 26 | Lumonics                     | www.lumonics.com          | 53 | Wightman Stewart            | www.wightmanstewart.co.uk      |
| 27 | Marbach                      | www.marbach.com           | 54 | Whitney                     | www.wawhitney.com              |

### CONCLUSION

Today, industrial lasers are now classed as "conventional" technology in many sectros of industry. There are several manufacturers of lasers, and many manufacturers of laser machines. Industry leaders of laser manufacturers are: Coherent Laser Group, Ferranti Photonics, Rofin-Sinar, Spectra-Physics and Trumpf. Industry leaders of laser manufacturers are: Amada, Bystronic, Cincinnati, ESAB, Hahn%Kolb, Lumonics, Mazak, Messer. Prima Industrie, Rofin, Salvagnini and Trumpf. Laser associations and organizations assist the manufacturing industries by providing technical, product and service information. All of these associations and organizations promote lasers and laser applications.

# REFERENCES

Radovanovic M., Laser cutting cost considerations, International scinetific conference "UNITECH'02", Technical University of Gabrovo, Gabrovo, Bulgaria, 2002, p.362-366.

- Radovanović M., Lazarević D., Laser-machines and Laserrobots for Cutting Thin Sheet, International Conference on Mechanical Transmissions and Mechanisms MTM '97, Tianjin University, Tianjin, China, 1997, p. 867-870.
- Radovanović M., Application of Lasers in Manufacturing, 4<sup>th</sup> International Conference on Accomplishments of Electrical and Mechanical Industries, Faculty of mechanical engineering, Banja Luka, Bosna&Hercegovina, 2001, p. 169-174.
- Radovanovic M., Laser cutting machines, 5<sup>th</sup> International conference DEMI 2002, University of Banja Luka, Faculty of mechanical engineering, Banja Luka, Bosna&Hercegovina, 2002, p. 173-178.
- Radovanovic M., Laser cutting machines for 3-D thin sheet parts, 8th International Conference "University's day", University "Constantin Brancusi", Faculty of engineering, Targu Jiu, Romania, 2002, CD

- Radovanović M., CO<sub>2</sub> laserske mašine za sečenje, 28. Savetovanje proizvodnog mašinstva Jugoslavije, Mašinski fakultet Kraljevo, Kraljevo, Jugoslavija, 2000, str. 3.13-3.18
- Introduction to Industrial Laser Materials Processing, Rofin-Sinar Laser, Hamburg, 2000
- Konig W., Fertigungsverfahren, VDI-Verlag, Dusseldorf, 1990.
- Dilthey U., Schweisstechnische Fertigungsverfahren, Schweis und Schneidtechnologien, VDI-Verlag, Dusseldorf, 1994.
- Steigende Dynamik in Lasermarkt, Laser-Praxis, Jun, 1990, LS.4
- www.laserspot.com www.franeklaser.com www.pcs-usa.com www.synova.ch www.directindustry.com www.connectexpress.com www.iwb.tum.de www.iwb.tum.de www.thefabricator.com www.e4production.net

Recommended for publication by Department of Mine Automation, Faculty of Mining Electromechanics