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SUMMARY

Conditions guaranteeing global j-Lipschitzicity of mappings defined in complete pseudometrically convex uniform spaces are given. Such mappings arise in many

applications mentioned in the references.

Let (X,A) be a complete T, -separated uniform space

whose uniformity is generated by a saturated family of
pseudometrics A = {d,(x,y): a € A}, where A is an index

set. Basic notions concerning the uniform spaces can be found
in (Weil, 1938; Kelley, 1959; Isbell, 1964; Page, 1978). A
uniform space (X , A) is said to be pseudometrically convex if

forevery x,y e X thereis ze X(z # X #y) such that

da(X: y) = da(xn Z)+da(zv y)

for every ae A provided d,(x,y)>0 (cf. Angelov et al.,

1997). The metrical segment between x and y with respect to
the pseudometric d, (.,.) we denote by [X, y],, ae A and

(X, ¥)a =[x yIa \{X, y}.

Let j: A— A be a map of the index set into itself whose
iterates are defined inductively as follows

i’°@=2ij@=i("%) keN).

Further on by (X,A) and (Y,A) we mean uniform spaces

whose index sets for their families of pseudometrics coincide,
i.e. we have

(X, {da(x yrac AD(Y. {da(x yrac A},

Let {Mg}, 5 be a family of positive constants where A is

the same index set. A mapping T:X —Y s called j-

Lipschitzian if for every x,y € X is satisfied

da(TX, Ty) <Madja) (X, y) for acA.
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The main goal of the present note is to formulate local
conditions which imply the j-Lipschitzian character of mappings
defined in complete pseudometrically convex uniform spaces.
Such mappings are generated by functional differential
equations treated in (Angelov, 1987; 1989, 2000).

Prior to formulate the main result we present an example of
pseudometrically convex uniform space. Consider the set

C(Rl) of all continuous functions f : R — R!. Let us fix

an arbitrary function b(.)eC(Rl) and assume that b(t) is
unbounded and positve on R1 Define the set
Cp(RY) ={f eC(RY | f(t)|<b(t)}. It is easy to see that
the sum of two functions from Cb(Rl) does not belong to

Cb(Rl) in general case. This means Cb(Rl) is neither a
Banach space nor linear topological space. Denote by A the
family of all compact intervals a=[p,q] R! and introduce
a family of pseudometrics A ={d,(f,g:acA} on

Cp(RY) where
da(f,9)=ll f —gllalll flla=sup{lf(t):ta}.

For every f,g er(Rl) with f =g we define the
functions h; =(@—-X)f(t)+Ag(t), where the parameter
A €[0]]. For each fixed ac A we have

da(f.m) =l f —(@=2)f —2Ag [la=2da(F,0)

da(@.h) =g -A-2)f -Aglla=@A-2)da(f.9).
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Obviously  d,(f,g)=d,(f,h)+da(h,9). So by
[f,gl, we denote the closed metrical segment
[f,0]a ={h : L e[01]}, while by (f,9)a ={h, :Ae(OD}.It
is easy to verify that d,(f,g) >0 implies d,(f,h,)>0
and d,(g,hy) >0 for L €(0,1) and vice versa.

The mapping T : X —Y is said to be almost directionally j-
Lipschitzian on X if for each x,ye X with x=y the

following inequality holds:

.| da(Tx,T2)
infl 2272 (X, ) i(a) | <M 1
d i) (%, 2) €(X,Y) ja) a (1)

for dj(a)(x, y) >0 and d,(Tx,Ty) =0 for dj(a)(x| y)=0.

The above definition extends the corresponding notion in
metric spaces (cf. Kirk et al., 1977).

For dj(a)(X,y) =0 there is no metrical segment between
x and y with respectto j(a).

Recall that a mapping T:X —Y is closed if for
{xn} = X the conditions limx, =x and limT(x,)=y
n n

imply xe X and Tx=1y.

THEOREM. Let (X,A) and (Y,A) be complete T,-
separated  uniform  spaces  with  (X,A)  being
pseudometrically convex. Let T : (X,A)—(Y,A) be almost
directionally j-Lipschitzian mapping with a family of positive
constants {Mf,_».If T is closed, then T is j-Lipschitzian

mapping on the whole (X,A).

Proof: Let x and y be two distinct elements of X, i.e.
x#Yy. Let us choose a new family of positive constants
M4}, suchthat Mj > M, for every fixed acA. By Q
we denote the countable ordinals and fixed y € Q (cf. Ch.XV,

Angelov, 1987). For all oo € €2 less than y define the set
{x,} so that

(1) %o =X

(y2) if x, =y forsome ocand o <n<vy,then x, =y;

(Y3)if a<B<n<yand X, #Yy,then Xg € (Xy, Xy) j(a)
for those a € A for which d ja) (X, X)) > 0;

(v4) If B<m<y and x, =y, then X, € (X3, Y) ja);

(y5) T is j-Lipschitzian with a family {Mj},_, on the set
{6 <7}

If v has a predecessor peQ, thatis, y=pn+1, then we
put x, =y.

If x, =y and dj(a)(X,,y) >0 in view of the definition (1)
we choose X, € (X,,Y) j(a) so that

da(Txy,Txu) < Médj(a)(xy,xu)
(recall that d j(q) (X, y) >0 implies d (X, X,)>0).

In what follows we show that (y1)- (y3) hold for n=y. If
a <, then (y4) implies

dja) (Xaur Xy ) < djay (Yo X ) + A jay (X X%y ) =
= j(a) (X ¥) @) (X, V) +dja) (X, V) = dja) (X, ¥) = that
= j(a) (X ¥) = djay (%, Y) <dja) (Xe Xy)s

is, dj(a)(xa,xy) = dj(a)(xa,x“)+dj(a)(xu,xy) or

X, € (Xoi %) j(a) - If <P <p <y, then (y3) implies
0 j(a) (X Xy) = d jay (o X ) + gy (R %y ) =
= j(a) (s Xp) + 0 ja) (X, Xy ) + 0 jgay (X, %) 2
2 () (X Xp) + dja) (Xp Xy ) 2 ) (X Xy)

that is dj(a)(xot'xy):dj(a)(xa'XB)+dj(a)(XB’Xy) which

means Xg € (X, X,) j(a) - SO (v3) is thus proved for n=y .

For B <y we have

02 (%, Y) =0 jca) (Xp %) + 0y (%, 9) =
= dja) (g ) + 0y (X Xy )+ 0y (%)
=dja) (Xp.X) + @) (%, )
Therefore (y4) holds for n=1.
We have to show that (y5) holds for n=1.

Suppose  PB<y. As we have shown

X € (Xalxy)j(a) and

already

da(Txg, TX, ) < da (TXg, TX,,) +da (TX,,, TX,) <
< Mad j(a) (%, Xu) + Mad j(a) (%, Xy ) = Mad jay (xg, %)
which proves (y5).

If v eQ is a limit ordinal, then we can choose a increasing

sequence of ordinals {y,}nq,
limy, =y . Inview of (y1) and (y3)
n

Yn €Q such that

dja) (%0:%y,,,) = dja) (X0, Xy, )+ jay (X 0%y )

which implies dj(a) (X0, %, )= dj@) (X0, %, ),
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that is, the sequence {d j(a) (Xo. Xy, )}y is non-decreasing.
Since (y4) implies

dj(a) (X0, Y) =dj@) (X0, Xy, ) +djay (X, ¥),
dj@) (%0, %y, ) =dj@) (X0, ¥) = dja) (%, ¥)
or dj(a) (X, Xyn ) < dj(a) (X, y)

which implies the
{dj(a) (X0, %, Yza - f we put x, =x then

n-1
dja) (XX, )= kzdj(a)(ka Ky )
=0

which implies

convergence of the sequence

2 dja) (0 Xy, ) <y (6, y) <o
k=0
This means that {x, }n_o is a Cauchy sequence in

(X,A). The completeness of X implies an existence of an

element ze X such that lim Xy, =1Z. We can define
n

X, =Z.

If forany a.<y wehave x, =y, then {x, } is eventually

the constant sequence {y}. In this case (y2) - (y5) are satisfied
form=vy.

Since y, <y then (y5) implies
da (X, . Txy, ) < Mad ja) (%, . %y,,)

for all m and n. We can assume without loss of generality
that d ja) (Xm, Xn) > 0. Otherwise we remove the elements

for which d j(a)(Xm,X,) =0 and renumber the rest ones.
Consequently {F Xy }n is a Cauchy sequence in Y . But Y is

a complete uniform space and T has a closed graph. Then

Iimeyn =Tx,. Let a<B<y and let n be chosen
n

sufficiently large such that v, > . In view of (y3) we have
dj@) (%o Xy, ) =dja) (%o Xp) +dja) (X3, Xy,)) -
Passing to the limit n — oo in the last equality we obtain
dja) (e X)) = dja) (%o Xp) + () (% %,)

thatis, Xg € (Xo,X,) ja) - AlsO (v4) implies

dja)(Xp, ¥) = dja) (Xp, Xy, ) +dja) (%, »Y)
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and after n— oo we obtain X, € (X, ¥) j(a) - Consequently
(y3) and (y4) are satisfied for =+ . Condition (y5) implies

da (Txg. Ty, ) < Mad ja) (4. %, )

(provided d j(a)(Xg, Xy, )>0)hence by n— o0
da(TXg, TX,) < Mad ja) (Xg, %) -

Finally we obtained a set {x, :y €} in X so that (v1) - (v5)
are satisfied. If x, =y forall y € Q then (y3) implies that the
set Z={djq)(x,x,):yeQ} is a discrete set of real

numbers. In view of Theorem 2, Ch. XV, (Sierpinski, 1965) Z
is non-denumerable set. The obtained contradiction implies
that for some y € Q, x, =y and then (y5) implies

da(TX, Ty) < Madjay (X, Y) -

The last inequality is valid for arbitary Mz > M, and
consequently

da(TX,Ty) < Madj@)(xy) .

Theorem is thus proved.
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