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SUMMARY 
Conditions guaranteeing global j-Lipschitzicity of mappings defined in complete pseudometrically convex uniform spaces are given. Such mappings arise in many 

applications mentioned in the references. 

 
   Let  Α,X  be a complete 2T -separated uniform space 

whose uniformity is generated by a saturated family of 

pseudometrics Α  Aayxda  :),( , where A  is an index 

set. Basic notions concerning the uniform spaces can be found 
in (Weil, 1938; Kelley, 1959; Isbell, 1964; Page, 1978). A 

uniform space  Α,X  is said to be pseudometrically convex if 

for every Xyx ,  there is )( yxzXz   such that 

 

   ),(),(),( yzdzxdyxd aaa   

 

for every Aa  provided 0),( yxd a  (cf. Angelov et al., 

1997). The metrical segment between x and y with respect to 

the pseudometric (.,.)ad  we denote by ayx ],[ , Aa  and  

 

   ( , ) [ , ] \ { , }x y x y x ya a . 

 
   Let AAj :  be a map of the index set into itself whose 

iterates are defined inductively as follows  
 

   ))(()(,)( 10 ajjajaaj kk   )( Nk  . 

 

   Further on by  Α,X  and  Α,Y  we mean uniform spaces 

whose index sets for their families of pseudometrics coincide, 
i.e. we have 
 

        AayxdYAayxdX aa  :),(,,:),(, . 

 

   Let  
AaaM   be a family of positive constants where A  is 

the same index set. A mapping YXT :  is called j-

Lipschitzian if for every Xyx ,  is satisfied  

 

   ),(),( )( yxdMTyTxd ajaa   for Aa . 

   The main goal of the present note is to formulate local 
conditions which imply the j-Lipschitzian character of mappings 
defined in complete pseudometrically convex uniform spaces. 
Such mappings are generated by functional differential 
equations treated in (Angelov, 1987; 1989, 2000). 
 
   Prior to formulate the main result we present an example of 
pseudometrically convex uniform space. Consider the set 

)( 1RC  of all continuous functions 11: RRf  . Let us fix 

an arbitrary function )(b(.) 1RC  and assume that )b(t  is 

unbounded and positive on R1. Define the set 

)}(|)(:|)({)( 11
b tbtfRCfRC  . It is easy to see that 

the sum of two functions from )( 1
b RC  does not belong to 

)( 1RCb  in general case. This means )( 1
b RC  is neither a 

Banach space nor linear topological space. Denote by A  the 

family of all compact intervals 1],[ Rqpa   and introduce 

a family of pseudometrics Α  Aagfda  :),(  on 

)( 1
b RC  where 

 

   }|:)(sup{|||||,||||),( attffgfgfd aaa  . 

 

   For every )(, 1RCgf b  with gf   we define the 

functions )()()1( tgtfh  , where the parameter 

]1,0[ . For each fixed Aa  we have 

 

   ),(||)1(||),( gfdgffhfd aaa   

 

),()1(||)1(||),( gfdgfghgd aaa  . 
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   Obviously ),(),(),( ghdhfdgfd aaa   . So by 

agf ],[  we denote the closed metrical segment 

]}1,0[:{],[  hgf a , while by )}1,0(:{),(  hgf a . It 

is easy to verify that 0),( gfda  implies 0),( hfda  

and 0),( hgda  for )1,0(  and vice versa. 

 
   The mapping YXT :  is said to be almost directionally j-

Lipschitzian on X  if for each Xyx ,  with yx   the 

following inequality holds: 
 

   aaj
aj

a Myxz
zxd

TzTxd















 )(

)(

),(:
),(

),(
inf   (1) 

 

for 0),()( yxd aj  and 0),( TyTxda  for 0),()( yxd aj . 

 
   The above definition extends the corresponding notion in 
metric spaces (cf. Kirk et al., 1977). 
 

   For 0),()( yxd aj  there is no metrical segment between 

x  and y  with respect to )(aj . 

 
   Recall that a mapping YXT :  is closed if for 

Xxn }{  the conditions xxn
n

lim  and yxT n
n

)(lim  

imply Xx  and yTx  . 

 

   THEOREM. Let  Α,X  and  Α,Y  be complete 2T -

separated uniform spaces with  Α,X  being 

pseudometrically convex. Let :T  Α,X   Α,Y  be almost 

directionally j-Lipschitzian mapping with a family of positive 

constants  
AaaM 

. If T  is closed, then T  is j-Lipschitzian 

mapping on the whole  Α,X . 

 
   Proof: Let x  and y  be two distinct elements of X , i.e. 

yx  . Let us choose a new family of positive constants 

 
AaaM


  such that aa MM   for every fixed Aa . By   

we denote the countable ordinals and fixed   (cf. Ch.XV, 

Angelov, 1987). For all  less than  define the set 
}{ x  so that  

   (1)  ;0 xx   

   )( 2  if yx   for some  and  , then yx  ; 

   (3) if   and yx  , then )(),( ajxxx       

for those Aa  for which 0),()(  xxd aj ; 

   (4) If   and yx  , then )(),( ajyxx   ; 

   (5) T  is j-Lipschitzian with a family  
AaaM


  on the set 

}:{ x . 

 

   If  has a predecessor  , that is, 1 , then we 

put yx  . 

 

   If yx   and 0),()(  yxd aj  in view of the definition (1) 

we choose )(),( ajyxx    so that  

 

   ),(),( )(   xxdMTxTxd ajaa  

 

(recall that 0),()(  yxd aj  implies 0),()(  xxd aj ). 

 

In what follows we show that (1)- (3) hold for  . If 

 , then (4) implies 

 

),,(),(),(

),(),(),(),(

),(),(),(

)()()(

)()()()(

)()()(













xxdyxdyxd

yxdyxdyxdyxd

xxdxxdxxd

ajajaj

ajajajaj

ajajaj

that 

is, ),(),(),( )()()(   xxdxxdxxd ajajaj  or  

 

)(),( ajxxx   . If  , then (3) implies 

),,(),(),(

),(),(),(

),(),(),(

)()()(

)()()(

)()()(













xxdxxdxxd

xxdxxdxxd

xxdxxdxxd

ajajaj

ajajaj

ajajaj

 

 

that is ),(),(),( )()()(   xxdxxdxxd ajajaj  which 

means )(),( ajxxx  . So (3) is thus proved for  . 

 
   For   we have 

),(),(

),(),(),(

),(),(),(

)()(

)()()(

)()()(

yxdxxd

yxdxxdxxd

yxdxxdyxd

ajaj

ajajaj

ajajaj













. 

 

   Therefore (4) holds for  . 

 

   We have to show that (5) holds for  . 

 
   Suppose  . As we have already shown 

)(),( ajxxx    and  

 

),(),(),(

),(),(),(

)()()( 







xxdMxxdMxxdM

TxTxdTxTxdTxTxd

ajaajaaja

aaa
 

 

which proves (5). 
 
   If   is a limit ordinal, then we can choose a increasing 

sequence of ordinals 
 1}{ nn , n  such that 

n
n

lim . In view of (1) and (3) 

 

   ),(),(),(
11 )(0)(0)(   

nnnn
xxdxxdxxd ajajaj   

 

which implies  ),(),( 0)(0)( 1 nn
xxdxxd ajaj  


, 
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that is, the sequence 
 10)( )},({ naj n

xxd  is non-decreasing. 

Since (4) implies 
 

   ),(),(),( )(0)(0)( yxdxxdyxd
nn ajajaj   ,     

   ),(),(),( )(0)(0)( yxdyxdxxd
nn ajajaj    

or ),(),( )()( yxdxxd ajaj n
  

 
which implies the convergence of the sequence 


 10)( },({ naj n

xxd . If we put xx 0
 then  

   




 


1

0

)()( ),(),(
1

n

k

ajaj kkn
xxdxxd ,  

which implies 
 

   




 
),(),( )(

0

)( 1
yxdxxd aj

k

aj kk
. 

 

   This means that 
 0}{ nn

x  is a Cauchy sequence in 

 Α,X . The completeness of X  implies an existence of an 

element Xz  such that zx
nn
lim . We can define 

zx  . 

 

   If for any   we have yx  , then }{
n

x  is eventually 

the constant sequence {y}. In this case (2) - (5) are satisfied 
for  . 

 

   Since n  then (5) implies  

 

   ),(),( )( mnmn
xxdMTxTxd ajaa    

 
for all m  and n . We can assume without loss of generality 

that 0),()( nmaj xxd . Otherwise we remove the elements 

for which 0),()( nmaj xxd  and renumber the rest ones. 

Consequently  
nn

Tx  is a Cauchy sequence in Y . But Y  is 

a complete uniform space and T  has a closed graph. Then 

  TxTx
nn

lim . Let   and let n  be chosen 

sufficiently large such that  n . In view of (3) we have 

 

   ),(),(),( )()()( nn
xxdxxdxxd ajajaj   . 

 
   Passing to the limit n  in the last equality we obtain  

 

   ),(),(),( )()()(   xxdxxdxxd ajajaj , 

 

that is, )(),( ajxxx   . Also (4) implies 

 

   ),(),(),( )()()( yxdxxdyxd
nn ajajaj    

 

and after n  we obtain )(),( ajyxx   . Consequently 

(3) and (4) are satisfied for  . Condition (5) implies  

 

   ),(),( )( nn
xxdMTxTxd ajaa    

 

(provided 0),()(  n
xxd aj ) hence by n  

 

   ),(),( )(   xxdMTxTxd ajaa . 

 

Finally we obtained a set }:{ x  in X  so that (1) - (5) 

are satisfied. If yx   for all   then (3) implies that the 

set }:),({ )(  xxdZ aj  is a discrete set of real 

numbers. In view of Theorem 2, Ch. XV, (Sierpinski, 1965) Z  
is non-denumerable set. The obtained contradiction implies 

that for some  , yx   and then (5) implies 

 

   ),(),( )( yxdMTyTxd ajaa  . 

 

   The last inequality is valid for arbitrary aa MM   and 

consequently 
 

   ),(),( )( yxdMTyTxd ajaa  . 

 
   Theorem is thus proved. 
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