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SUMMARY 
The equivalence of two systems of equations of motion arising  in electromagnetic two-body problem is obtained.  

 
   In the present note we consider two systems of equations of 
motion arising in electromagnetic two-body problem (Synge, 
1940; Synge, 1960) and formulated in (Angelov, 2002). 
 
   First we recall some denotations and results from (Angelov, 
2002; Angelov, 2000) conserning  
 
J. L. Synge’s equations of motion 
   As in (Synge, 1940) we denote by 
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)1,2,1( 2  ip  the space-time coordinates of the moving 

particles, by pm  - their proper massses, by pe  - their 

charges, c  - the speed of the light. The coordinates of the 

velocity vectors are 
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The coordinates of the unit tangent vectors to the world-lines 
are 
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It follows pp c  / . 

 

   By 4.,.  we denote the scalar product in the Minkowski 

space, while by  .,.  - the scalar product in 3-dimensional 

Euclidean subspace. Synge’s equations of motion modeling 
the interaction of two moving charged particles are the 
following: 
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where the elements of proper time are 
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Recall that in (1) there is a summation in )3,2,1( nn . 

 

   The elements )( p
rnF  of the electromagnetic tensors are 

derived by the retarded Lienard-Wiecherd potentials  
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   By )( pq  we denote the isotropic vectors (cf. Synge, 1940; 

1960) drawn into the past: 
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   Calculating )( p
rnF  as in (Angelov, 1990) we write equations 

from (2) in the form: 
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where the dot means a differentiation in t. 
 
   Proceeding as in (Angelov, 2000) and proving that 4-th and 
8-th equations are a consequence of the rest ones we obtain a 
system of 6 equations. Now we are able to formulate the initial 
value problem for the above equations in the following way: to 

find unknown velocities )()( tu p
  )3,2,1;2,1( p , for 

0t  satisfying equations )3( 1 ,  )3( 2 of motion (written in 

details below): 
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   Recall that in the above equations )3( 1  
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   We note that the delay functions )(tpq  satisfy functional 

equations (*) for ),( t . For 0t  )()( tu p
  are 

prescribed functions: 0),()( )()(   ttutu pp , where 
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   This means that for prescribed trajectories 
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the coordinates of the initial positions.) 
 
Kepler problem in polar coordinates 

   In what follows we consider plane motion in 32 xOx  

coordinate plane for above equations. We suppose that the 

first particle 1P  is fixed at the origin )0,0,0(O , that is, 
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   Passing to the polar coordinates we can put 
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   After transformations made in (Angelov, 2000) we obtain the 
following second order system: 
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for 0t  and initial conditions 
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   On the other hand beginning with the original form of Synge 
equations (Angelov, 2002) we obtain for Kepler problem the 
following equations of motion: 
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   The systems (6) and )5(   are equivalent. 

Indeed, the right-hand side of )5(   is the vector-function 
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 is continuous vector-function – the necessary and 

sufficiently condition for equivalence of (6) and )5(  . 
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Then from )5(   we obtain the system (with )2(uu  ): 
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   Multiplying the first equations of (7) by 2u , the second - by 

3u  and summing we obtain: 
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   Multiplying the first equations of (7) by cos , the second – 

by sin  and summing, and next multiplying the first equations 

of (7) by  sin , the second - by cos  and summing, we 

obtain the system 
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   The final system (8) is equivalent to the system (4), since 
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