ON THE EQUIVALENCE OF DIFFERENTIAL SYSTEMS ARISING IN ELECTROMAGNETIC TWO-BODY PROBLEM

Lubomir Georgiev

Vasil Angelov

University of Mining and Geology "St. Ivan Rilski Sofia 1700, Bulgaria University of Mining and Geology "St. Ivan Rilski Sofia 1700, Bulgaria

SUMMARY

The equivalence of two systems of equations of motion arising in electromagnetic two-body problem is obtained.

In the present note we consider two systems of equations of motion arising in electromagnetic two-body problem (Synge, 1940; Synge, 1960) and formulated in (Angelov, 2002).

First we recall some denotations and results from (Angelov, 2002; Angelov, 2000) conserning

J. L. Synge's equations of motion

As in (Synge, 1940) we denote by

$$x^{(p)} = (x_1^{(p)}(t), x_2^{(p)}(t), x_3^{(p)}(t), x_4^{(p)}(t) = ict)$$

 $(p = 1,2, i^2 = -1)$ the space-time coordinates of the moving particles, by m_p - their proper masses, by e_p - their charges, c - the speed of the light. The coordinates of the velocity vectors are

$$u^{(p)} = (u_1^{(p)}(t), u_2^{(p)}(t), u_3^{(p)}(t)) \quad (p = 1, 2)$$

The coordinates of the unit tangent vectors to the world-lines are

$$\lambda_{\alpha}^{(p)} = \frac{\gamma_p u_{\alpha}^{(p)}(t)}{c} = \frac{u_{\alpha}^{(p)}(t)}{\Delta_p} (\alpha = 1, 2, 3), \lambda_4^{(p)} = i\gamma_p = \frac{ic}{\Delta_p},$$

where

$$\gamma_p = \left(1 - \frac{1}{c^2} \sum_{\alpha=1}^3 [u_{\alpha}^{(p)}(t)]^2\right)^{-\frac{1}{2}}, \ \Delta_p = \left(c^2 - \sum_{\alpha=1}^3 [u_{\alpha}^{(p)}(t)]^2\right)^{\frac{1}{2}}.$$

It follows $\gamma_p = c / \Delta_p$.

By $< .,. >_4$ we denote the scalar product in the Minkowski space, while by < .,. > - the scalar product in 3-dimensional Euclidean subspace. Synge's equations of motion modeling the interaction of two moving charged particles are the following:

$$m_p \frac{d\lambda_r^{(p)}}{ds_p} = \frac{e_p}{c^2} F_{rn}^{(p)} \lambda_n^{(p)} \quad (r = 1, 2, 3, 4)$$
(1)

where the elements of proper time are

$$ds_p = \frac{c}{\gamma_p} dt = \Delta_p dt \ (p = 1, 2)$$

Recall that in (1) there is a summation in n (n = 1, 2, 3).

The elements $F_{rn}^{(p)}$ of the electromagnetic tensors are derived by the retarded Lienard-Wiecherd potentials

$$A_r^{(p)} = -\frac{e_p \lambda_r^{(p)}}{\left\langle \lambda^{(p)}, \xi^{(pq)} \right\rangle_4} \quad (r = 1, 2, 3, 4) \text{, that is}$$
$$F_{rn}^{(p)} = \frac{\partial A_n^{(p)}}{\partial x_r^{(p)}} - \frac{\partial A_r^{(p)}}{\partial x_n^{(p)}} \quad \xi^{(pq)} \text{.}$$

By $\xi^{(pq)}$ we denote the isotropic vectors (cf. Synge, 1940; 1960) drawn into the past:

$$\begin{split} \xi^{(pq)} &= (x_1^{(p)}(t) - x_1^{(q)}(t - \tau_{pq}(t)), \\ x_2^{(p)}(t) - x_2^{(q)}(t - \tau_{pq}(t)), x_3^{(p)}(t) - x_3^{(q)}(t - \tau_{pq}(t)), ic\tau_{pq}(t)) \end{split}$$

where
$$\left\langle \xi^{(p,q)}, \xi^{(p,q)} \right\rangle_4 = 0$$
 or
 $\tau_{pq}(t) = \frac{1}{c} \left(\sum_{\beta=1}^3 [x_{\beta}^{(p)}(t) - x_{\beta}^{(q)}(t - \tau_{pq}(t))]^2 \right)^{\frac{1}{2}}$ (*)
 $((pq) = (12), (21))$.

Calculating $F_{rn}^{(p)}$ as in (Angelov, 1990) we write equations from (2) in the form:

$$\frac{d\lambda_{\alpha}^{(p)}}{ds_{p}} = \frac{Q_{p}}{c^{2}} \left\{ \frac{\xi_{\alpha}^{(pq)} \langle \lambda^{(p)}, \lambda^{(q)} \rangle_{4} - \lambda_{\alpha}^{(q)} \langle \lambda^{(p)}, \xi^{(pq)} \rangle_{4}}{\langle \lambda^{(q)}, \xi^{(pq)} \rangle_{4}^{3}} \left[1 + \frac{1}{\langle \lambda^{(q)}, \xi^{(pq)} \rangle_{4}^{2}} \left[\langle \lambda^{(p)}, \xi^{(pq)} \rangle_{4} - \frac{d\lambda^{(q)}}{ds_{q}} - \frac{\langle \xi^{(pq)}, \frac{d\lambda^{(q)}}{ds_{q}} \rangle_{4}}{\langle \lambda^{(q)}, \xi^{(pq)} \rangle_{4}^{2}} \left[\langle \lambda^{(p)}, \xi^{(pq)} \rangle_{4} - \frac{d\lambda^{(q)}}{ds_{q}} - \frac{\langle \xi^{(pq)}, \frac{d\lambda^{(q)}}{ds_{q}} \rangle_{4}}{\langle \lambda^{(q)}, \xi^{(pq)} \rangle_{4}} \right] \right\} \quad (\alpha = 1, 2, 3)$$

$$(2.\alpha)$$

$$\frac{d\lambda_{4}^{(p)}}{ds_{p}} = \frac{Q_{p}}{c^{2}} \left\{ \frac{\xi_{4}^{(pq)} \langle \lambda^{(p)}, \lambda^{(q)} \rangle_{4} - \lambda_{4}^{(q)} \langle \lambda^{(p)}, \xi^{(pq)} \rangle_{4}}{\langle \lambda^{(q)}, \xi^{(pq)} \rangle_{4}^{3}} \left[1 + \left(\frac{\xi^{(pq)}}{ds_{q}}, \frac{d\lambda^{(q)}}{ds_{q}} \right)_{4} \right] + \frac{1}{\langle \lambda^{(q)}, \xi^{(pq)} \rangle_{4}^{2}} \left[\langle \lambda^{(p)}, \xi^{(pq)} \rangle_{4}, \frac{d\lambda^{(q)}}{ds_{q}} - \left(\xi^{(pq)}, \frac{d\lambda^{(q)}}{ds_{q}} \right)_{4} \xi_{4}^{(pq)} \right] \right\}$$
(2.4)

where $Q_p = \frac{e_1.e_2}{m_p}$, (p = 1,2). Further on we denote $u^{(q)} \equiv u^{(q)}(t - \tau_{pq})$,

$$\begin{split} \lambda^{(q)} &= (\gamma_{pq} u_1^{(q)} / c, \gamma_{pq} u_2^{(q)} / c, \gamma_{pq} u_3^{(q)} / c, i\gamma_{pq}) = \\ &= (u_1^{(q)} / \Delta_{pq}, u_2^{(q)} / \Delta_{pq}, u_3^{(q)} / \Delta_{pq}, ic / \Delta_{pq}), \\ \text{where } \gamma_{pq} = \left(1 - \frac{1}{c^2} \sum_{\alpha=1}^3 [u_{\alpha}^{(q)}(t - \tau_{pq}(t))]^2\right)^{-\frac{1}{2}}, \\ \Delta_{pq} = \left(c^2 - \sum_{\alpha=1}^3 [u_{\alpha}^{(q)}(t - \tau_{pq}(t))]^2\right)^{\frac{1}{2}} \text{ and } \end{split}$$

$$\frac{d\lambda_{\alpha}^{(p)}}{ds_{p}} = \frac{d\left(\frac{\gamma_{p}}{c}u_{\alpha}^{(p)}\right)}{\frac{c}{\gamma_{p}}dt} = \frac{d\left(\frac{u_{\alpha}^{(p)}}{\Delta_{p}dt}\right)}{\Delta_{p}dt} =$$
$$= \frac{1}{\Delta_{p}^{2}}\dot{u}_{\alpha}^{(p)} + \frac{u_{\alpha}^{(p)}}{\Delta_{p}^{4}}\left\langle u^{(p)}, \dot{u}^{(p)}\right\rangle \ (\alpha = 1, 2, 3)$$
$$\frac{d\lambda_{4}^{(p)}}{ds_{p}} = \frac{d(i\gamma_{p})}{\frac{c}{\gamma_{p}}dt} = \frac{icd\left(\frac{1}{\Delta_{p}}\right)}{\Delta_{p}dt} = \frac{ic}{\Delta_{p}^{4}}\left\langle u^{(p)}, \dot{u}^{(p)}\right\rangle,$$

where the dot means a differentiation in *t*.

Proceeding as in (Angelov, 2000) and proving that 4-th and 8-th equations are a consequence of the rest ones we obtain a system of 6 equations. Now we are able to formulate the initial value problem for the above equations in the following way: to find unknown velocities $u_{\alpha}^{(p)}(t)$ $(p = 1,2; \alpha = 1,2,3)$, for $t \ge 0$ satisfying equations $(3_{1\alpha})$, $(3_{2\alpha})$ of motion (written in details below):

$$\begin{split} &\frac{1}{\Delta_{1}}\dot{u}_{\alpha}^{(1)} + \frac{u_{\alpha}^{(1)}}{\Delta_{1}^{3}} \left\langle u^{(1)}, \dot{u}^{(1)} \right\rangle = \\ &= \frac{Q_{1}}{c^{2}} \left\{ \frac{\left[c^{2} - \left\langle u^{(1)}, u^{(2)} \right\rangle \right] \xi_{\alpha}^{(12)} - \left[c^{2}\tau_{12} - \left\langle u^{(1)}, \xi^{(12)} \right\rangle \right] u_{\alpha}^{(2)}}{\left[c^{2}\tau_{12} - \left\langle u^{(1)}, \xi^{(12)} \right\rangle \right]^{3}} \times \right. \\ &\times \frac{\Delta_{12}^{4} + D_{12} \Delta_{12}^{2} \left\langle \xi^{(12)}, \dot{u}^{(2)} \right\rangle + \left(\left\langle \xi^{(12)}, u^{(2)} \right\rangle - c^{2}\tau_{12} \right) \left\langle u^{(2)}, \dot{u}^{(2)} \right\rangle}{\Delta_{12}^{2}} + \\ &+ D_{12} \frac{\left(\left\langle u^{(1^{*})}, \xi^{(12)} \right\rangle - c^{2}\tau_{12} \right) \dot{u}_{\alpha}^{(2)} - \left\langle u^{(1)}, \dot{u}^{(2)} \right\rangle \xi_{\alpha}^{12}}{\left[c^{2}\tau_{12} - \left\langle u^{(2^{*})}, \xi^{(12)} \right\rangle \right]^{2}} + \\ &+ \frac{D_{12}}{\Delta_{12}^{2}} \cdot \frac{\left(\left\langle u^{(1^{*})}, \xi^{(12)} \right\rangle - c^{2}\tau_{12} \right) u_{\alpha}^{(2)} \left\langle u^{(2)}, \dot{u}^{(2)} \right\rangle}{\left[c^{2}\tau_{12} - \left\langle u^{(2^{*})}, \xi^{(12)} \right\rangle \right]^{2}} + \\ &+ \frac{D_{12}}{\Delta_{12}^{2}} \cdot \frac{\left(c^{2} - \left\langle u^{(1^{*})}, u^{(2)} \right\rangle \right) \xi_{\alpha}^{(12)} \left\langle u^{(2)}, \dot{u}^{(2)} \right\rangle}{\left[c^{2}\tau_{12} - \left\langle u^{(2^{*})}, \xi^{(12)} \right\rangle \right]^{2}} \right\}. \end{split}$$

$$\begin{split} &\frac{1}{\Delta_{2}}\dot{u}_{\alpha}^{(2)} + \frac{u_{\alpha}^{(2)}}{\Delta_{1}^{3}} \left\langle u^{(2)}, \dot{u}^{(2)} \right\rangle = \\ &= \frac{Q_{1}}{c^{2}} \left\{ \frac{\left[c^{2} - \left\langle u^{(1)}, u^{(2)} \right\rangle \right] \xi_{\alpha}^{(21)} - \left[c^{2}\tau_{12} - \left\langle u^{(1)}, \xi^{(21)} \right\rangle \right] u_{\alpha}^{(1)}}{\left[c^{2}\tau_{12} - \left\langle u^{(1)}, \xi^{(12)} \right\rangle \right]^{3}} \times \\ &\times \frac{\Delta_{21}^{4} + D_{21}\Delta_{21}^{2} \left\langle \xi^{(21)}, \dot{u}^{(1)} \right\rangle + \left(\left\langle \xi^{(21)}, u^{(1)} \right\rangle - c^{2}\tau_{21} \right) \left\langle u^{(1)}, \dot{u}^{(1)} \right\rangle}{\Delta_{21}^{2}} + \\ &+ D_{21} \frac{\left(\left\langle u^{(2^{*})}, \xi^{(21)} \right\rangle - c^{2}\tau_{21} \right) \dot{u}_{\alpha}^{(1)} - \left\langle u^{(2)}, \dot{u}^{(1)} \right\rangle \xi_{\alpha}^{2}}{\left[c^{2}\tau_{21} - \left\langle u^{(1^{*})}, \xi^{(21)} \right\rangle \right]^{2}} + \\ &+ \frac{D_{21}}{\Delta_{21}^{2}} \cdot \frac{\left(\left\langle u^{(2^{*})}, \xi^{(21)} \right\rangle - c^{2}\tau_{21} \right) u_{\alpha}^{(1)} \left\langle u^{(1)}, \dot{u}^{(1)} \right\rangle}{\left[c^{2}\tau_{21} - \left\langle u^{(1^{*})}, \xi^{(21)} \right\rangle \right]^{2}} + \\ &+ \frac{D_{21}}{\Delta_{21}^{2}} \cdot \frac{\left(c^{2} - \left\langle u^{(2^{*})}, u^{(1)} \right\rangle \right) \xi_{\alpha}^{(21)} \left\langle u^{(1)}, \dot{u}^{(1)} \right\rangle}{\left[c^{2}\tau_{21} - \left\langle u^{(1^{*})}, \xi^{(21)} \right\rangle \right]^{2}} \right\}. \end{split}$$

Recall that in the above equations $(3_{1\alpha})$

$$u^{(1)} = u^{(1)}(t), u^{(2)} = u^{(2)}(t - \tau_{12})$$

while in $(3_{2\alpha})$

$$u^{(2)} = u^{(2)}(t), u^{(1)} = u^{(1)}(t - \tau_{21}).$$

We note that the delay functions $\tau_{pq}(t)$ satisfy functional equations (*) for $t \in (-\infty, \infty)$. For $t \le 0$ $u_{\alpha}^{(p)}(t)$ are prescribed functions: $u_{\alpha}^{(p)}(t) = \overline{u}_{\alpha}^{(p)}(t), t \le 0$, where $\overline{u}_{\alpha}^{(p)}(t) = \frac{d\overline{x}_{\alpha}^{(p)}(t)}{dt}, t \le 0$.

This means that for prescribed trajectories

 $(\bar{x}_1^{(1)}(t), \bar{x}_2^{(1)}(t), \bar{x}_3^{(1)}(t)), (\bar{x}_1^{(2)}(t), \bar{x}_2^{(2)}(t), \bar{x}_3^{(2)}(t))$ for $t \le 0$ one has to find trajectories, satisfying the above system of equations for t > 0.

(We recal $x_{\alpha}^{(p)}(t) = x_{\alpha0}^{(p)} + \int_{0}^{t} u_{\alpha}^{(p)}(s) ds$, where $x_{\alpha0}^{(p)}$ are the coordinates of the initial positions.)

Kepler problem in polar coordinates

In what follows we consider plane motion in Ox_2x_3 coordinate plane for above equations. We suppose that the first particle P_1 is fixed at the origin O(0,0,0), that is,

$$P_1: \begin{vmatrix} x_1^{(1)}(t) = 0 \\ x_2^{(1)}(t) = 0, & t \in (-\infty, \infty) \\ x_3^{(1)}(t) = 0 \end{vmatrix}$$

It follows by necessity
$$\begin{aligned} \overline{x}_1^{(1)}(t) &= 0\\ \overline{x}_2^{(1)}(t) &= 0\\ \overline{x}_3^{(1)}(t) &= 0 \end{aligned}$$

Passing to the polar coordinates we can put

$$P_{1}: \begin{vmatrix} x_{1}^{(2)}(t) = 0 \\ x_{2}^{(2)}(t) = \rho(t) \cos \varphi(t) \\ x_{3}^{(2)}(t) = \rho(t) \sin \varphi(t) \end{vmatrix}, \text{ where } \rho(t) > 0.$$

After transformations made in (Angelov, 2000) we obtain the following second order system:

$$\ddot{\rho}(t) = \rho(t)\dot{\phi}^{2}(t) + \frac{Q_{2}}{c^{3}} \cdot \frac{\left[c^{2} - \dot{\rho}^{2}(t)\right]\sqrt{c^{2} - \dot{\rho}^{2}(t) - \rho^{2}(t)\dot{\phi}^{2}(t)}}{\rho^{2}(t)}$$

$$\ddot{\phi}(t) = -\frac{2\dot{\rho}(t)\dot{\phi}(t)}{\rho(t)} \cdot \left[1 + \frac{Q_{2}\sqrt{c^{2} - \dot{\rho}^{2}(t) - \rho^{2}(t)\dot{\phi}^{2}(t)}}{2c^{3}\rho(t)}\right]$$
(4)

for t > 0 and initial conditions

 $\rho(0) = \rho_0, \dot{\rho}(0) = \dot{\rho}_0, \phi(0) = \phi_0, \dot{\phi}(0) = \dot{\phi}_0.$

On the other hand beginning with the original form of Synge equations (Angelov, 2002) we obtain for Kepler problem the following equations of motion:

$$\frac{d(\gamma_2 u_{\alpha}^{(2)})}{dt} = \frac{Q_2 \xi_{\alpha}^{(21)}}{\rho^3} \quad (\alpha = 1, 2, 3).$$
 (5_{\alpha})

But $\xi^{(21)} = (0, \rho(t) \cos \varphi(t), \rho(t) \sin \varphi(t))$. Then integrating (5_{α}) from 0 to *t* we have

$$\gamma_{2}(t)u_{\alpha}^{(2)}(t) - \gamma_{2}^{0}u_{\alpha}^{(2)}(0) = Q_{2}\int_{0}^{t} \frac{\xi_{\alpha}^{(21)}(s)}{\rho^{3}(s)} ds \text{ or}$$

$$\dot{\rho}(t)\cos\varphi(t) - \rho(t)\dot{\varphi}(t)\sin\varphi(t) = \frac{1}{\gamma_{2}(t)} \left[Q_{2}\int_{0}^{t} \frac{\cos\varphi(s)}{\rho^{2}(s)} ds + C_{2} \right]$$

$$\dot{\rho}(t)\sin\varphi(t) + \rho(t)\dot{\varphi}(t)\cos\varphi(t) = \frac{1}{\gamma_{2}(t)} \left[Q_{2}\int_{0}^{t} \frac{\sin\varphi(s)}{\rho^{2}(s)} ds + C_{3} \right]$$
(6)

where
$$C_2 = \gamma_2^0 (\dot{\rho}_0 \cos \phi_0 - \rho_0 \dot{\phi}_0 \sin \phi_0)$$
,
 $C_3 = \gamma_2^0 (\dot{\rho}_0 \sin \phi_0 + \rho_0 \dot{\phi}_0 \cos \phi_0)$,
 $\gamma_2^0 = \frac{1}{\sqrt{1 - \frac{1}{c^2} (\dot{\rho}_0^2 + \rho_0^2 \dot{\phi}_0^2)}}$.

ANNUAL University of Mining and Geology "St. Ivan Rilski", vol. 44-45 (2002), part III MECHANIZATION, ELECTRIFICATION AND AUTOMATION IN MINES

The systems (6) and (5_{α}) are equivalent. Indeed, the right-hand side of (5_{α}) is the vector-function

$$\vec{F}(t) = \left(\frac{\cos\varphi(t)}{\rho^{2}(t)}, \frac{\sin\varphi(t)}{\rho^{2}(t)}\right) \text{ and } \left|\vec{F}(t) - \vec{F}(t_{0})\right|^{2} = \\ = \frac{1}{\rho^{4}(t)} + \frac{1}{\rho^{4}(t_{0})} - \frac{2\cos(\varphi(t) - \varphi(t_{0}))}{\rho^{2}(t)\rho^{2}(t_{0})} \xrightarrow{t \to t_{0}} 0, \text{ that}$$

is, $\dot{F}(t)$ is continuous vector-function – the necessary and sufficiently condition for equivalence of (6) and (5_{α}) .

On the other hand
$$\dot{\gamma}_2 = \frac{d}{dt} \left(\frac{c}{\Delta_2} \right) = \frac{c}{\Delta_2^3} \langle u, \dot{u} \rangle$$
,
 $\frac{d}{dt} \left(\gamma_2 u_{\alpha}^{(2)} \right) = \dot{\gamma}_2 u_{\alpha}^{(2)} + \gamma_2 \dot{u}_{\alpha}^{(2)}$, ($\alpha = 2,3$)

Then from (5_{α}) we obtain the system (with $u \equiv u^{(2)}$):

$$\frac{\frac{c}{\Delta_2^3} \langle u, \dot{u} \rangle u_2 + \frac{c}{\Delta_2} \dot{u}_2 = \frac{Q_2 \cos \varphi}{\rho^2}}{\frac{c}{\Delta_2^3} \langle u, \dot{u} \rangle u_3 + \frac{c}{\Delta_2} \dot{u}_3 = \frac{Q_2 \sin \varphi}{\rho^2}.$$
(7)

Multiplying the first equations of (7) by u_2 , the second - by u_3 and summing we obtain:

$$\frac{c}{\Delta_2^3} \langle u, \dot{u} \rangle \Big(\langle u, u \rangle + \Delta_2^2 \Big) = \frac{Q_2}{\rho^2} \quad (u_2 \cos \varphi + u_3 \sin \varphi) , \text{ that}$$

is $\frac{c}{\Delta_2^3} \langle u, \dot{u} \rangle = \frac{Q_2 \dot{\rho}}{c^2 \rho^2} .$

Thus we have
$$\dot{\gamma}_2 = \frac{Q_2 \dot{\rho}}{c^2 \rho^2}$$
.

Multiplying the first equations of (7) by $\cos \phi$, the second – by $\sin \phi$ and summing, and next multiplying the first equations of (7) by $-\sin \phi$, the second - by $\cos \phi$ and summing, we

obtain the system

$$\frac{2\dot{\rho} + \gamma_2(\ddot{\rho} - \rho\dot{\phi}^2) = \frac{Q_2}{\rho^2}}{2\rho\dot{\phi} + \gamma_2(2\dot{\rho}\dot{\phi} + \rho\ddot{\phi}) = 0}$$
, or

 $(\dot{\gamma}_2 = \frac{Q_2 \dot{\rho}}{c^2 \rho^2})$

$$\gamma_{2}(\ddot{\rho} - \rho\dot{\phi}^{2}) = \frac{Q_{2}}{c^{2}\rho^{2}}(c^{2} - \dot{\rho}^{2})$$

$$\gamma_{2}(\rho\ddot{\phi} + 2\dot{\rho}\dot{\phi}) = -\frac{Q_{2}}{c^{2}\rho}\dot{\rho}\dot{\phi}$$
(8)

The final system (8) is equivalent to the system (4), since

$$\gamma_2 = \frac{c}{\Delta_2} = \frac{c}{\sqrt{c^2 - \dot{\rho}^2 - \rho^2 \dot{\phi}^2}} \,.$$

REFERENCES

- Synge J.L. On the electromagnetic two-body problem. Proc. Roy. Soc. (London), ser. A, 177 (1940), 118-139.
- Synge J.L. Classical Dynamics, Springer-Verlag, 1960.
- Angelov V.G. Plane orbits for Synge's electrodynamics twobody problem (I). Seminar on Fixed Point Theory – Cluj-Napoca (2002), to appear.
- Angelov V.G. On the Synge equation in 3-dimensional twobody problem of classical electrodynamics. J. Math. Anal. Appl., v.151, N 2, (1990), 488-511.
- Angelov V. G. Escape trajectories of J. L. Synge equations. J. Non. Anal. RWA, ser. B, v. 1, (2000), 189-204.

Recommended for publication by Department of Mathematics, Faculty of Mining Electromechanics