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SUMMARY
The equivalence of two systems of equations of motion arising in electromagnetic two-body problem is obtained.
In the present note we consider two systems of equations of By <.,.>4 we denote the scalar product in the Minkowski
motion arising in electromagnetic two-body problem (Synge, space, while by <.,.> - the scalar product in 3-dimensional

1940; Synge, 1960) and formulated in (Angelov, 2002). Euclidean subspace. Synge’s equations of motion modeling

First we recall some denotations and results from (Angelov, the interaction of two moving charged particles are the

2002; Angelov, 2000) conserning following:

J. L. Synge’s equations of motion m d7‘(rp) _% E(P)y(p) (r=12,34) ()
As in (Synge, 1940) we denote by p ds, G2 moAn 2,3,

x(P) = ) (1), 6P (), 4P (0, P () =ict) where the elements of proper time are

(p=12, i%= —1) the space-time coordinates of the moving dsp = Ldt =Apdt(p=12).
particles, by mp - their proper massses, by e, - their Vo

charges, ¢ - the speed of the light. The coordinates of the Recall that in (1) there is a summationin n (n=1,2,3) .
velocity vectors are

The elements Fr(np) of the electromagnetic tensors are

(P) _ (,(P (p) (p) _
utP? = (U™ (), us™ (), us™ (t =12).
(10127 0. u57 ) (p ) derived by the retarded Lienard-Wiecherd potentials

The coordinates of the unit tangent vectors to the world-lines )
are () (1534, tati
A= <;L(p),§(pq>> e
4

(p) (p) i
ug’ (t
}L(OP):YP O(L: ()zuaA (t) (0 =12,3), K(A,p)ztizAl_c’
P P r(p A" AP (o

where

; 1 By &(P9 we denote the isotropic vectors (cf. Synge, 1940;
2 . _
A= [CZ _ Z[u&p) (t)]Z] . 1960) drawn into the past:
-1

N |-

13 2
1p=|1-3 Z_:l[u((xp) ®)]
£ P = (x{P) (1)~ x(@ (t - g (1),

It follows y, =C/A,. .
Yp=H % X (0= x5V (1= pg (O, X7 O - x{P (L= pq (O 7 g (1)
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where <E_,(p'q),§(p'q)>4 =0 or

3
T ® =] DI04Vt e O ()
p=1
((po) = (12), (21))

Calculating Fr(np) as in (Angelov, 1990) we write equations
from (2) in the form:

(Pa) /4 (P) 2 (@) _ (@) /4(P) £(pa)
) Qp [SFV(PAD) D[, )

T2 3
ds, ¢ <k(q) e (Pa) >4

p
e 0N (o, §<pq)> '
' ds (@ (o) 4 ds
ta <7L = >4 i

(a)
<§(pq) a9 > g(PO) 1L (=129 (2.0)
dsq .

411+

(PA) /4(P) 4(@)\ _4(a)/4(P) £(pa)
N (P, >4 AP (3P, (00}

T2 3
dsp ¢ <x(q),g<pq>>4

4114

+<§<pq) d%(q)> ]+ 1 BM) £ @
1 2 L
dsq /, <;L(q)la(pq)>4 4 dsg

(@)
<a(pQ) | > égF)Q) (2.4)
sq /,
where Q,, 8% (p_12). Futher on we denote
m
p

2D = (7 pqui® 1, v pqul? 16,y pqui® f, iy pg) =

= (U 1A g uS 7 A g Ul TA g icT A ),

1

where vy, = [1——Z[u (t- rpq(t))]] 2,

1

, E
Apg :[cz - Y-ty (t))]z]2 and

a=1

(p)
alrrym| gl Yo
d?x.((f)_ c ¢ ~ Apdt B

dsp ot Apdt
Yp
u(p)+ < u(P u(p)> (a=123)
Azp Ay
® g iCd[Al J
dal, :d(Wp): p :£<u(p)’u(p)>’
dsp  Cgr  Apdt A%

Tp
where the dot means a differentiation in t.

Proceeding as in (Angelov, 2000) and proving that 4-th and
8-th equations are a consequence of the rest ones we obtain a
system of 6 equations. Now we are able to formulate the initial
value problem for the above equations in the following way: to

find unknown velocities u&p) ® (p=12,0=123), for
t >0 satisfying equations (31,), (3,4 ) of motion (written in
details below):

u(1) + UA(1)< u® u(1)>

o [Cz_<u(1),u<2)>]§(12)_[CzT _<u(1) g(lz)ﬂu((f)
2 [C o < u® §(12)>:|
A‘iz+D12A§2<a‘12).u(2)>+(<a‘12) u(2)> c lej< (2>,u<2)>

X +
A2

U0 02\ 20 Y@ (0 4@)\e12
+Dyp (< [C2>T12<u()2\)’§(12§>}2 > + (©™)
By (<u(1‘>,§(12)>_Cztlzju&2)<u(2>,u(2)>
A [sz (v, §(12)>T
oy, (61 {u ) (s 0)
A [sz ~(u@), &(12)”2 '

A

X

+

ANNUAL University of Mining and Geology “St. Ivan Rilski”, vol. 44-45 (2002), part Il MECHANIZATION, ELECTRIFICATION AND AUTOMATION IN MINES



Georgiev L. et al. ON THE EQUIVALENCE OF DIFFERENTIAL SYSTEMS ARISING IN ...

6
u(2) Lo : < (2>,u(2)>:
AZ Al

o [Cz _<u(1)’u(2)>}:&21) —[CZ‘E _ <U(1),§(21)>]Ug')

=== X

c? [sz —<u(1),§(12)>]3
121j<u<1>,u(1>>

§ A+ D21A221<§(21) ; U(1)> + (<§(21) : U(l)> —c? .

Aoy
(<u(2‘),§(21>> ¢,
D21

ju(l) —<u(2) u(l)>§§1
|:C Ty < (1) §(21)>:|

b (< 4@ 5(21)> c 121) (1)<u(1) u(1)>

D

Ao [CZTZ < 1)§21)>}

5 (Cz _<u(2‘) u(1)>)§(21)<u<1) u(1)>
Do
23, [Cztz < 1)&21)” .

Recall that in the above equations (3, )

+

(324)

+

while in (35,,)
u@ —u@ ), u® =u®t—1,).

We note that the delay functions t 4 (t) satisfy functional
equations (*) for te(—o0,0). For t<0 u&p)(t) are

functionS' ulP ty=alP ), t<0, where

dx§P (1) (t)
dt

prescribed

0sP 1) =

This means that for prescribed trajectories
&2 . % O % ), (52 0, %2 0. %2 () for t<0

one has to find trajectories, sat|sfy|ng the above system of
equations for t > 0.

t
(We recal x(P) (t) = xé%) + j ulP) (s)ds, where x&%) are
0

the coordinates of the initial positions.)

Kepler problem in polar coordinates
In what follows we consider plane motion in Ox;Xs

coordinate plane for above equations. We suppose that the
first particle P; is fixed at the origin 0(0,0,0) , that is,

x® () =0
PP () =0, te(-o0,0).
xP () =0

x® (t) =0
P (t)=0.
x(t)=0

It follows by necessity

Passing to the polar coordinates we can put

x? (t)=0
P, :[x$2 t) = p(t) coso(t)
x{? (t) = p(t) sin o(t)

, where p(t) >0.

After transformations made in (Angelov, 2000) we obtain the
following second order system:

2_~2t 2—‘2t—2t'2t
ﬁ(t)=p(t)¢2(t)+f_32.[c p ()]\/C p2p(t)() P (9"

(@)

2000) |, Qe =P -p200°()
p(t) 2¢%p(t)

o(t) =

for t > 0 and initial conditions
p(0) =pg.pP(0) =pg,9(0) =@y, 9(0) = 9g .

On the other hand beginning with the original form of Synge
equations (Angelov, 2002) we obtain for Kepler problem the
following equations of motion:

d(rou?) _ QuE{™
dt 03

(a=123). GCu)

But  £@D =(0,p(t)cose(t), p(t)sine()).  Then
integrating (5,,) from 0 to t we have

(21)
Yz(t)u(z)(t) yg (2)(0) Q, J‘é ()

0 p(S)

b(t)cose(t) - p()atsinol) = | @,
T(t)

()i g(t) + )0t cos0t) = ——| @,
¥o(t)

where C, —yz(p COSQPg —poPg Sin (po)

Cs :YZ(PO singg +poPo COS(PO)-
1

1 .9 2.9 .
\/1—2(90 +p0P0)
Cc

0
Yo =
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The systems (6) and (5, ) are equivalent.
Indeed, the right-hand side of (5, ) is the vector-function

- i ~ - 2
F(t) _ [COSZ(P(t) , SInZ(P(t)J and ‘F (t) _ F(to)‘ —
po(t)  po(t)
_ 1 1 2cos(e®) —¢(tp))
T4 4 2 2
pr() P (to) p= ()P (to)
is, F(t) is continuous vector-function — the necessary and
sufficiently condition for equivalence of (6) and (5,) .

— 0, that

t 4)t0

(u,u),

d( c c
Ontheotherhand v = —| — |= —
2 dt(AzJ A

d ) .
E(VzU&Z)F 7ou® +y,0? | (0 =23)

Then from (5,) we obtain the system (with u = u® ):

cos
i<u,u>u2 +L02:Q2 L
A A 2
2 p
c c Q, sin U
—3<U,U>U3+—U3= 2 > (P
A Az p

Multiplying the first equations of (7) by u,, the second - by
uz and summing we obtain:

%(u,d)((u,u>+A22):—2 (up cose+ugsing), that
A2 p

c A Q2P
is — (u,u) =
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Q2p .
c2p2

Thus we have y, =

Multiplying the first equations of (7) by cos¢ , the second -
by sin @ and summing, and next multiplying the first equations
of (7) by —sing, the second - by cos¢ and summing, we

. . Q
| V2P +72(B-pp?) =2
obtain the system p<, or
T2PP+72(2p0+p$) =0
(12 =-22)
cp
. Q )
Y2 (B-p9°) = =25 (c* —p%)
cp
0 (8)
Y2(p+2p9) = -2
cp
The final system (8) is equivalent to the system (4), since

c c

Y2 =" :
Ay lcz_pz_pz(bz
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