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ABSTRACT 
A method is proposed which allows to solve Von Mise's nonlinear plasticity equation. An algorithm is suggested for solving a nonlinear differential equation on the 
basis of the balance equations which are suitable for defining some dimension less variables of Von Mise's plasticity conditions. 
A software product has been developed with tabular and graphic appendices referring to accepted boundary conditions for propped and jammed plate. 
The results can be used as a basis for certain studies on support elements in the mining industry. 

 
INTRODUCTION 

 
Boundary analysis of round ideally plastic plates is done by 

many authors (Brotchine, 1960; Guerlement, Lamblin, 1972; 
Mohaghegh, Coon, 1973; Sawczuk, Jaeder, 1963). One of the 
first published papers in this scientific area is (Sawczuk, 
Duszek, 1963). The criterium of maximal tangental stresses is 
used in it. In (Mohaghegh, Coon, 1973) are given the 
conditions for plasticity of a material, which follows Mise’s 
criterium in intergral-parametric form, but the question about 
bending element and shearing stresses is not solved. In 
(Brotchine, 1960; Shapiro, 1961) a generalisation of previous 
results as a high non-linear equation of a surface and some 
particular cases are solved by using suitable linearisation of 
this equation. 
 

In this article a method, systemizing all previous results and 
permitting to obtain solvation of non-linear Von Mise’s equation 
is proposed. 
 
 

EQUILIBRIUM EQUATION 
 

On fig.1 cylindrical coordinates r, Q, z and positive directions 
of forces and moments are given. 

 

 
Figure 1. 

 
The equilibrium equation could be written in the form: 
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It is suitable non-dimension variables x; m; n; t and the 

dimensional q and p to be defined: 
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where Mo, e, R are plastic moment, thicness and radius of the 
plate. 
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CONDITIONS FOR PLASTICITY EXISTENSE 
 
1. Independent action of bending moment and shearing 
force 
   On (Shapiro, 1961) is assumed that stresses, caused by 
shearing force could be discussed independently from those of 
bending moment. The condition for plasticity existence in this 
case is given by the equations 
 

    0M,MF;0TF r21      (4) 

 
The arbitrary surface of the deformed plate could be 

assumed as small flat surfaces for which the equations (5) are 
valid: 
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where To is shearing force for one unit length and is solved 

using the relation 
 

,.ET oo       (6) 

 

where o is tangential stress limit of plastic yield in pure 

shearing (fig.2). 
 

 
Figure 2. 

 
2. Mutual action of shearing force and bending moment 
 
2.1. Von Mise’s plasticity conditions. Plasticity condition is 
written in the form (Brotchine, 1960; Sawczuk, Jaeder, 1963). 
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and presents an ellipsoid in coordinate system Mr Ma T. 
Family of sections of ellipsoid with a plain perpendicular to the 
axis t (t could be determined from the equation t = T/To) are 
presented on fig.3.  

 
Figure 3. 

 
Fig. 4 is a section of (7) with the plane o, t, n. Taking into 

account of non-dimensional variables (2), the equation (7) 
could be written in the form which could be taken as a square 
equation towards n. 
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   There fore: 
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It is evident that 
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Figure 4. 

 
2.2. Maximum of m. The m extremums are searched in 
plasticity conditions, static limits for the plate discussed to be 
defined. 
 
   For the purpose derivatives of (8) must be computed: 
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from where the relations are defined 
 

0nm2,0mn2                    (8b) 

 
and the first one of them corresponds to mmax. From (8) could 

be found 
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METHOD PROPOSED 
 

The elimination of n from (3) and (9) leads to a differential 
equation: 
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   Which is dependent of searched load parameters by q and T. 
 
   The algorithm proposed is as follows: 
1. Equation (11) is integrated numerically into the interval (xi, 

mi), (xr, mr1). The result from the decision is saved in mr1, and 

xr is between xi + xf. 

2. Using the same method (11) is integrated for the second 

time, but in the interval (xf, mf)  (xr, mr2) and mr2 is the 

solvation obtained. 
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3. Under the conditions mr2   mr1 load parameters are 

corrected and then procedure 1 is repeated. 
4. The procedure is stopped when the difference between 
mr1 and mr2 is negligably small, what could be put as an 

allowed punctuality of the solvation. 
 
   A software product is elaborated by following the algorithm 
above. 
 
 

APPLICATIONS 
 
1. Propped plate (fig.5a) 
Boundary conditions 
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Results obtained are given in tables 1, 2, 3, 4 and as graphs 

(fig. 5b). 

 
Figure 5 

2. Fixed plate (fig.6a) 
   Boundary conditions 
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Table 1                                                                             t=0.05 

 
А/R 

 
 

o

1

M2

P


 

without 
shearing force 

o

2

M2

P


 

with shearing 
force 

2

21

P

PP 


 
% 

0.1 
 

1.193510 
 

1.156638 
 

3.19 
 0.15 

 
1.276320 

 
1.249567 

 
2.14 

 0.20 
 

1.365865 
 

1.342972 
 

1.70 
 0.25 

 
1.465136 

 
1.443725 

 
1.48 

 0.30 
 

1.577100 
 

1.555844 
 

1.37 
 0.35 

 
1.705235 

 
1.683139 

 
1.31 

 0.40 
 

1.853964 
 

1.830071 
 

1.31 
 0.45 

 
2.029181 

 
2.002376 

 
1.33 

 0.50 
 

2.239053 
 

2.207852 
 

1.41 
  

 
 

Table 2                                                                             t=0.1 

 
А/R 

 
 

o

1

M2

P


 

without 
shearing force 

o

2

M2

P


 

with shearing 
force 

2

21

P

PP 


 
% 

0.1 
 

1.193510 
 

1.037124 
 

15.07 
 0.15 

 
1.276320 

 
1.171673 

 
8.93 

 0.20 
 

1.365865 
 

1.277697 
 

6.90 
 0.25 

 
1.465136 

 
1.383078 

 
5.93 

 0.30 
 

1.577100 
 

1.495829 
 

5.43 
 0.35 

 
1.705235 

 
1.620916 

 
5.20 

 0.40 
 

1.853964 
 

1.762994 
 

5.15 
 0.45 

 
2.029181 

 
1.927436 

 
5.27 

 0.50 
 

2.239053 
 

2.121118 
 

5.56 
  

Table 3                                                                             t=0.15  

 
А/R 

 
 

o

1

M2

P


 

without 
shearing force 

o

2

M2

P


 

with shearing 
force 

2

21

P

PP 


 
% 

0.1 
 

1.193510 
 

- 
 

- 
 0.15 

 
1.276320 

 
1.046800 

 
21.92 

 0.20 
 

1.365865 
 

1.178598 
 

15.89 
 0.25 

 
1.465136 

 
1.292342 

 
13.37 

 0.30 
 

1.577100 
 

1.406607 
 

12.12 
 0.35 

 
1.705235 

 
1.528858 

 
11.53 

 0.40 
 

1.853964 
 

1.664303 
 

11.39 
 0.45 

 
2.029181 

 
1.817979 

 
11.61 

 
0.50 

 
2.239053 

 
1.995693 

 
12.19 

  

Table 4                                                                             t=0.20 

 
А/R 

 
 

o

1

M2

P


 

without 
shearing force 

o

2

M2

P


 

with shearing 
force 

2

21

P

PP 


 
% 

0.1 
 

1.193510 
 

- 
 

- 
 0.15 

 
1.276320 

 
- 
 

- 
 0.20 

 
1.365865 

 
1.055572 

 
29.39 

 0.25 
 

1.465136 
 

1.182634 
 

23.88 
 0.30 

 
1.577100 

 
1.299774 

 
21.33 

 0.35 
 

1.705235 
 

1.419349 
 

20.14 
 0.40 

 
1.853964 

 
1.547722 

 
19.78 

 0.45 
 

2.029181 
 

1.689841 
 

20.08 
 0.50 

 
2.239053 

 
1.85063 

 
20.99 

  
Tables 5, 6, 7 contain results from numerical integration and 

fig.6b illustrates the calculations. 
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Table 5                                                                             t=0.05 

 
А/R 

 
 

o

1

M2

P


 

without 
shearing force 

o

2

M2

P


 

with shearing 
force 

2

21

P

PP 


 
% 

0.1 
 

1.897169 
 

1.749513 
 

8.44 
 0.15 

 
2.097663 

 
1.994682 

 
5.16 

 0.20 
 

2.304407 
 

2.216200 
 

3.98 
 0.25 

 
2.526285 

 
2.442476 

 
3.43 

 0.30 
 

2.770641 
 

2.685430 
 

3.17 
 0.35 

 
3.045226 

 
2.954035 

 
3.09 

 0.40 
 

3.359381 
 

3.257489 
 

3.13 
 0.45 

 
3.725231 

 
3.606797 

 
3.28 

 0.50 
 

4.159343 
 

4.016234 
 

3.56 
  

Table 6                                                                             t=0.1 

 
А/R 

 
 

o

1

M2

P


 

without 
shearing force 

o

2

M2

P


 

with shearing 
force 

2

21

P

PP 


 
% 

0.1 
 

1.897169 
 

- 
 

- 
 0.15 

 
2.0976668 

 
1.672251 

 
25.44 

 0.20 
 

2.304407 
 

1.964258 
 

17.32 
 0.25 

 
2.526285 

 
2.210647 

 
14.28 

 0.30 
 

2.770641 
 

2.453915 
 

12.91 
 0.35 

 
3.045226 

 
2.709750 

 
12.38 

 0.40 
 

3.359381 
 

2.988364 
 

12.42 
 0.45 

 
3.725231 

 
3.298988 

 
12.92 

 0.50 
 

4.159343 
 

3.651618 
 

13.90 
  

Table 7                                                                             t=0.15 

 
А/R 

 
 

o

1

M2

P


 

without 
shearing force 

o

2

M2

P


 

with shearing 
force 

2

21

P

PP 


 
% 

0 
 

1.230570 
 

- 
 

- 
 0.1 

 
1.897169 

 
- 
 

- 
 0.15 

 
1.976668 

 
- 
 

- 
 0.20 

 
2.304407 

 
- 
 

- 
 0.25 

 
2.526285 

 
1.865976 

 
35.39 

 0.30 
 

2.770641 
 

2.125957 
 

30.32 
 0.35 

 
3.045226 

 
2.374025 

 
28.27 

 0.40 
 

3.359381 
 

2.628064 
 

27.83 
 0.45 

 
3.725231 

 
2.897946 

 
28.55 

 0.50 
 

4.159343 
 

3.191302 
 

30.33 
  

 
Figure 6. 

 
 

CONCLUSION 
 

Taking into account the computations made the following 
conclusions could be made: 
a) For a propped plate the classic theory gives enough good 
results if 
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b) For a fixed plate classic theory is suitable if 
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