Минно-геоложки университет "Св. Иван Рилски" Годишник, том 47, свитък II, Добив и преработка на минерални суровини, София 2004, стр.99-101

Properties of Ba_{0.7}Sr_{0.3}Ti_{1-x}Sn_xO₃ Ceramics Obtained by the Peroxomethod

Mato Nadoliiski ¹, Valda Levcheva ²

¹ Department of Physics, University of Architecture, Civil Engineering and Geodesy, 1046 Sofia, Bulgaria ² Department of Radiophysics and Electronics, Faculty of Physics, Sofia University, 1126 Sofia, Bulgaria

ABSTRACT. The system $Ba_{0.7}Sr_{0.3}Ti_{1-x}Sn_xO_3$ has been obtained by the peroxomethod. The paper studies the temperature dependencies of the dielectric permittivity ϵ_r and the dielectric losses tan δ at a frequency of 1 kHz for the following temperature conditions of ceramics calcination: 1250°C, 1300°C, and 1400°C. The ceramic material composed of $Ba_{0.7}Sr_{0.3}Ti_{0.8}Sn_{0.2}O_3$ and calcinated at 1400°C in the temperature interval 20-120°C has a temperature coefficient of dielectric permittivity TK ϵ_r —0 and low dielectric losses. These properties make it suitable for manufacturing thermally stable capacitors of low dielectric losses.

СВОЙСТВА НА Ва0.7 Sr0.3 Ti1.* SnxO3 КЕРАМИКА ПОЛУЧЕНА ПО ПЕРОКСОМЕТОД

РЕЗЮМЕ. Получена е по пероксо метод системата Ba_{0.7}Sr_{0.3}Ti_{1.x}Sn_xO₃. Изследвани са температурните зависимости на диелектричната проницаемост ε_r и диелектричните загуби tan δ при честота 1кHz за следния температурен режим на изпичане на керамиката: 1250, 1300, 1400 °C. Керамичния материал със състав Ba_{0.7}Sr_{0.3}Ti_{0.8}Sn_{0.2}O₃ изпечен при 1400 °C за температурния интервал от 20 до 120 °C има температурен коефициент на диелектричната проницаемост TK_{Er} → 0 и ниски диелектрични загуби. Тези данни го правят подходящ за производството на термостабилни кондензатори, както и за кондензатори с ниски диелектрични загуби.

Introduction

The ceramics obtained on the basis of BaTiO₃ of perovskite structure is one of the most important materials in using multilayer ceramic capacitors, thermistors of positive temperature coefficient, etc. It should be noted that the electric properties of the BaTiO₃ ceramics can be controlled by slight modifications by means of doting substances as SrTiO₃ (Tsuzuki et al., 1998), Nd₂O₃ (Kohler et al., 1996), La₂O₃ (Natsuko and Makoto, 1997) and others or depressor agents as MgTiO₃, NiTiO₃, ZnTiO₃ (Parvanova and Andreev 2002), Bi₂O₃ (Yi Zhi et al., 1998), SnO₂, ZrO₂ and others. The paper presents the results of the study on the dielectric properties and resistivity of the solid solutions Ba_{0.7}Sr_{0.3}Ti_{1-x}Sn_xO₃ where x=0.05; 0.10; 0.15; 0.20 mol. The materials were prepared by using the peroxomethod. Technologically, it has certain advantages over standard ceramic technologies: the titanates obtained are characterized by higher purity and homogeneity; no preliminary grinding of the input materials is required; the synthesis temperature is considerably lower.

Sample Preparation and Measurements

The input titanates BaTiO₃, SrTiO₃ were prepared by using the peroxomethod (Genov et ai., 1988; Maneva and Parvanova, 1995) based on the interaction of a TiCl₄ and Me-salt (Ba²⁺, Sr²⁺) solution with H₂O and alkalization with NH₃ to a fixed pH value. The synthesized peroxo-compounds were sintered at T=600°C and T=650°C, respectively, until metatitanates were

obtained. The later were identified by an X-ray phase analysis by using a TUR-U-62 device. SnO₂ has 99% purity. The following compositions were synthesized: Ba_{0.5}Sr_{0.5}Ti_{1-x}Sn_xO₃ where x=0.05, 0.10, 0.15 and 0.20 mol. The powders were pressed under P=200x10⁵Pa. 10% polyvinyl alcohol was used as plasticizer. The resultant product was disks 7mm in diameter and 4mm in thickness. They were calcinated at T_{cal}=1250, 1300, 1400°C for 3 hours, with a 0.5-hour retention at 360°C and 400°C to gradually evaporate the plasticizer. In order to make the contact required for the electric measurements, the disks were metallized on both sides using silver paste.

The temperature dependence of the capacity and dielectric losses $(\tan \delta)$ were tested at a frequency of 1 kHz by using a General Radio impedance meter (model 1687). The temperature dependence of the capacity was measured in a Heraeus Votsch temperature chamber in a temperature range from -40°C to +120°C at steps of 5°C.

Results and Discussion

Figs. 1 and 2 show the dependencies of the dielectric permittivity ε_r and the dielectric losses tan δ of the materials on the concentration of Sn⁴⁺ ions. For all three compositions ε_r increases smoothly, passes through a broad maximum and decreases at a concentration of Sn⁴⁺ ions higher than 0.1 mol. The permittivity has the highest values for materials calcinated

ГОДИШНИК на Минно-геоложкия университет "Св. Иван Рилски", том 47 (2004), свитък II, ДОБИВ И ПРЕРАБОТКА НА МИНЕРАЛНИ СУРОВИНИ

Fig. 1. Dependence of the dielectric permittivity ϵ_r of the materials on the concentration of Sn

Fig. 2. Dependence of the dielectric losses tan δ of the materials on the concentration of Sn

at the highest temperature. A similar dependence is also observed in the composition studied by Parvanova in which the depressor agent is Mg^{2*} . The character of change in the curves of tan δ is the same as that for ε_r [Fig. 2].

The resistivity ρ_{ν} of the compositions decreases with increasing the concentration of Sn^{4+} ions and reaches its peak value for the material calcinated at the lowest temperature.

The properties of BaTiO₃ ceramics in which the ions (Ba²⁺) and (Ti⁴⁺) are replaced simultaneously with other ions of suitable valence and ionic radii, depend on the influence of each admixed ion. By replacing Ba²⁺ ions in the solid solutions with Sr²⁺ ions, the phase transition temperature T_c decreases inearly, the ceramics (Ba, Sr) TiO₃ having higher peak values of permittivity than pure BaTiO₃ (Cava et al., 1996; Parvanova, 2002; Tavata and Kawai, 1997).

In the system BaO-TiO₂-SnO₂ small amounts of SnO₂ stabilize two new phases of barium titanate – $Ba_2Ti_5O_{12}$ and $Ba_2Ti_9O_{12}$ (Jaffe et al., 1971). With increasing the concentration of Sn⁴⁺ ions the contribution of these phases to permittivity

increases and reaches its peak value at x=0.1 mol, whereas ϵ_r and tan δ pass through a broad maximum.

The dependence of the resistivity ρ_v of materials on the concentration of Sn⁴⁺ ions is presented in Fig. 3. The resistivity

Fig. 3. Dependence of the resistivity ρ_{ν} of materials on the concentration of Sn

Fig. 4. Dependence of the dielectric permittivity ϵ_r on the composition of the material calcinated at a temperature of 1400°C; 1) x=0.05 mol; 2) x=0.10 mol; 3) x=0.15 mol; 4) x=0.20 mol

decreases with increasing the concentration of Sn^{4+} ions and reaches its peak value for the material calcinated at the lowest temperature. When calcinating the titanates of Ba and Sr oxygen vacancies occur which participate in the material conductivity (J. lin and T. Wu, 1990). The concentration of

ГОДИШНИК на Минно-геоложкия университет "Св. Иван Рилски", том 47 (2004), свитък II, ДОБИВ И ПРЕРАБОТКА НА МИНЕРАЛНИ СУРОВИНИ

these vacancies increases with increasing the concentration of Sn⁴⁺ ions and as a result the strength of materials decreases (Fig. 3). The fact that the material calcinated at the lowest temperature has the highest ρ_v shows that the concentration of the oxygen vacancies in it has the lowest value.

The dependence of the permittivity ϵ_r of the material calcinated at 1400°C on the temperature is shown in Fig. 4.

With increasing the concentration of Sn⁴⁺ ions the peak values of ϵ_r of the material decrease and the phase transition region expands. The temperature of the tetragonal rhombic phase transition increases, the rhombic phase stabilizes and ϵ_r remains constant in the temperature interval under study.

The experimental dependencies of permittivity and dielectric losses obtained can also be related to the various polarizabilities of the ions Ti⁴⁺ and Sn⁴⁺. Sn⁴⁺ has a higher electronic polarizability that causes an increase in the spontaneous deformation of the elementary cell. As a result ϵ_r and tan δ decreases with increasing the concentrations of the ions Sn⁴⁺, i.e. the ferrohardness of the materials increases.

References

- Cava, R., J. Krajewski, W. Peck. 1996. Compensation of the temperature coefficient of the dielectric constant of barium strontium titanate.- *Patemt,* C 04 B 35/46, № 5552355.
- Genov L., M. Maneva, V. Parvanova. 1988. Synthesis and thermal decomposition of barium peroxotitanate to barium titanate.- *J.Therm.Anal.*, 33, 727-734.
- Jaffe, B., W. Cook, H. Jaffe. 1971. *Piezoelectric ceramics.* Academic Press, London, 235.
- Kohler, H., D. Mateika, S. Oostra. 1996. Substituted bariumneodimum-titanium-perovskite.- *Patemt*, C 04 B 35/46, № 5556818.

- Lin, J. H., T. B. Wu. 1990. Effects of isovalent substitution on lattice softening and transition character of BaTiO₃ solid solutions.-*J. Appl. Phys., 68, 3, 415-419.*
- Maneva, M., V. Parvanova. 1995. Thermal decomposition of calcium and strontium peroxotitanates to metatitanates. *J. Therm. Anal.*, 41, 353-361.
- Natsuko, K., K. Makoto. 1997. Influence of Sr-addition on the semiconducting behavior of La-doped BaTiO₃ ceramics.-*Nippon Seramikkusu Kyokai gakujutsu ronbunshi*, 1221, 436-439.
- Parvanova V. D., S. K. Andreev 2002. Characterization of the metatitanate system (1-x)BaTiO₃xNiTiO₃ and (1x)BaTiO₃xZnTiO₃ obtained by the peroxide method.-*J. Mat. Sci: Mat. In Electronics*, 13, 585-588.
- Parvanova V., 2003. Dielectric properties of Ba_{0.5}Sr_{0.5-x}Mg_xTiO₃ obtained by peroxomethod.- *J. Univ. Chem. Technol. Met.* (Sofia), 38, 1, 23-30.
- Parvanova V., 2002. Dielectric properties of Ba_{1-x}Sr_xTiO₃ ceramic obtained by the peroxomethod.- *J. Univ. Chem. Technol. Met. (Sofia),* 37, 3, 5-10.
- Tabata, H., T. Kawai., 1997. Dielectric properties of strained (Sr,Ca)TiO₃/(BaSr)TiO₃ article lattices.- *Appl.Phys.Lett.*, 3, 321-323.
- Tsuzuki A., Kato K. Kusumoto K., Torii Y., 1998. Preparation and characterization of Ba_{1-x}Sr_xTiO₃ by sol-gel processing.-*J. Mater. Sci.*, 12, 3055-3058.
- Yi Zhi, Ang Chen, Vilarinho P. M., Mantas P. Q., Baptista J. L., 1998, Dielectric properties of Bi doped SrTiO₃ ceramics in the temperature range 500-800 K.-J. Appl. Phys., 9, 4874-4877.