ТВЪРДОФАЗОВ СИНТЕЗ НА МИНЕРАЛИ ОТ ГРУПАТА НА ПЕРОВСКИТА И СРОДНИ НА ТЯХ СЪЕДИНЕНИЯ

Л. Бозаджиев, Г. Георгиев

Университет "Проф. д-р Асен Златаров", 8010 Бургас

РЕЗЮМЕ. Чрез твърдофазовия синтез в температурния интервал от 900 до 1500 °C от вещества с квалификация р. и р. а. са синтезирани перовскити и сродни на тях съединения. Технологичната схема на получаването им включва: смилане и хомогенизация на изходните вещества; пресуване; температурна обработка за синтез на перовскитите; смилане и хомогенизация; пресуване и изпичане.Операцията по смилане и изпичане се повтаря двукратно или трикратно до пълното превръщане на масите в съответните перовскити. С компютърна програма са индексирани дифрактограмите на синтезираните перовскити и са уточнени параметрите на елементарните им клетки.

SOLID – PHASE SYNTHESIS OF MINERALS OF THE GROUP OF THE PEROVSKITE AND RELATED COMPOUNDS

L. Bozadjiev, G. Georgiev

University "Prof. dr. Asen Zlatarov", 8010 Bourgas

ABSTRACT. By solid phase synthesis in the temperature interval from 900 – 1500 °C from substances with qualification p. and p. a. perovskites and related compounds are synthesized. The technological scheme for their preparation involves: milling and homogenization of starting materials; pressing; temperature treatment for preparation of the perovskites; milling and homogenization; pressing and firing. The milling and firing operation is repeated double or triple until the entire transformation of the masses to the certain perovskites. With a computer program the diffractograms of the synthesized perovskites are indexed and the elementary cell parameters are specified.

Въведение

Минералите от перовскитовата група имат обща формула $A_{2\ast}B_2O_6$, където A – Ca, Na, Ce и други редкоземни елементи, a B – Ti и Nb (Костов, 1993). Главни представители на перовскитите са перовскит CaTiO₃, таусонит SrTiO₃, луешит NaNbO₃ и лопарит NaCeTi₂O₆. Титанатите, ниобатите, цирконатите и станатите на алкалоземните елементи – Ca, Mg, Ba, Sr, както и техните твърди разтвори са подходящи за изготвяне на кондензатори (Герасимов и др., 2003). Общата им формула $A_2B_2O_6$, съответства на тази на минералите от перовскитовата група (A – алкалоземен елемент, a B - Ti, Nb, Zr и Sn). Някои от тези съединения, като BaTiO₃, притежават сегнетоелектрични свйства. Такива сегнетоелектрични материали са напр. PbTiO₃, PbZrO₃, Pb(Zr,Ti)O₃, Pb(Zr_{0.52}Ti_{0.48})O₃, Pb(Mg_{1/3}Nb_{2/3})O₃ - PbTiO₃ - PbZrO₃.

Калциевият титанат CaTiO₃ е известен в природата като минерала перовскит (Костов, 1993). Той кристализира в ромбичната сингония, пространствената му група е Рсmn, а параметрите на елементарната му клетка са a₀ 0,537 nm, b₀ 0,764 nm, c₀ 0,544 nm. Структурата на синтетичния перовскит е моноклинна (Othmer, 1969), псевдокубична с a₀ 0,765 nm, b₀ 0,765 nm, c₀ 0,765 nm и β 90,6°. Zelezny et al. (2002) считат, че той притежава три полиморфни модификации – кубична Pm3m; a₀ 0, 3822 nm (над 1580° C); тетрагонална (1380 – 1580° C) и ромбична Рсmn. Характерните междуплоскостни разстояния за CaTiO₃ (Костов, 1993) са (в nm): 0,270 – 0,191 – 0,272 - 0,155.

Бариевият титанат BaTiO₃ притежава четири полиморфни модификации – кубична (над 120° C), тетрагонална (5 -120° C), ромбична (-90 – 5° C) и тригонална (под -90° C) (Герасимов и др., 2003). Според (Hahn and Wondratchek, 1994) пространствените групи и параметрите на елементарните клетки на тези модификации на BaTiO₃ са: Pm3m и a_{\circ} 0,402 nm (за кубична структура); P4mm и a_{\circ} 0,399 nm, c_{\circ} 0,404 nm (за тетрагонална); Amm2 и a_{\circ} 0,802 nm, b_{\circ} 0.401 nm c_{\circ} 0,802 nm (за ромбична) и R3m и a_{\circ} 0,566 nm, c_{\circ} 0,712 nm (за тригонална).

Таусонитът SrTiO₃ кристализира в кубичната сингония като пространствената му група е Pm3m, а параметърът на елементарната му клетка е a_o 0,3905 nm (Костов, 1993). Според Sánchez et al. (2001) под 150 К SrTiO₃ има тетрагонална структура I4/mcm с a_o 0,388 nm и c_o 0,392 nm. Неговите междуплоскостни разтояния са (Костов, 1993) са (в nm): 0,276 – 0,195 – 0,159 – 0,225.

Македонитът PbTiO₃ е тетрагонален под 490 °C (Герасимов и др., 2003), а над тази температура кристализира в кубичната сингония. Matsubara et al. (1989) считат, че този преход става между 520 – 630 °C, а пространствената му група и параметрите на елементарната клетка са I4/mcm и a_{\circ} 0,3899 nm, c_{\circ} 0,4154 nm. Междуплоскостните разстояния (Костов, 1993) са (в nm): 0,284 – 0,276 – 0,390 – 0,230.

Стронциевият ниобат SrNbO₃ е ромбичен (Peng and Irvine, 1998), пространствената му група е $P2_12_12_1$, а параметрите на елементарната му клетка са a_0 0,5688 nm, b_0 0,6682 nm и c_0 0,8057 nm.

ГОДИШНИК на Минно-геоложкия университет "Св. Иван Рилски", том 47 (2004), свитък I, ГЕОЛОГИЯ И ГЕОФИЗИКА

Бозаджиев Л. и др. ТВЪРДОФАЗОВ СИНТЕЗ НА ...

CaSnO₃, SrSnO₃ и BaSnO₃ кристализират в кубичната сингония (Михеев, 1957). Пространствената им група е Pm3m, а параметрите на елементарните им клетки са (в nm): a_o 0,3928 nm (CaSnO₃), a_o 0,4033 nm (SrSnO₃) и a_o 0,4108 nm (BaSnO₃). PbSnO₃ притежава и тетрагонална структура, където a_o 0,8738 nm и c_o 0,6613 nm. Според Миркин (1961) междуплоскостните разстояния на CaSnO₃ са (в nm): 0,390 (45) – 0,280 (100) – 0,236 (40) – 0,197 (35).

Съединенията от типа AZrO₃ (A - Ca, Sr, Pb или Ba) кристализират в кубичната сингония (Михеев, 1957) с пространствени групи Pm3m и параметри на елементарните клетки (в nm): a_o 0,3998 nm (CaZrO₃), a_o 0,4088 nm (SrZrO₃), a_o 0,3898 nm (PbZrO₃) и a_o 0,4185 nm (BaZrO₃). Според Бережной (1970) CaZrO₃ е моноклинен (псевдокубичен) с параметри на елементарната клетка a_o 0,4003 nm, b_o 0,3997 nm, c_o 0,4003 nm и β 91,7°.

SrZrO₃ кристализира в ромбичната сингония (Beckers and Sanchez, 1996) с пространствена група Pnma и a_0 0,5814 nm, b_0 0,8196 nm, c_0 0,5792 nm. Според (Миркин, 1961) междуплоскостните разстояния за SrZrO₃ са (в nm): 0,290 (100) – 0,204 (40) – 0,145 (30) – 0,109 (27)..

РbZrO₃ е ромбичен до ~ 200° С (Hann et al., 1989), над която става тригонален, а над 232° С – кубичен. Теппегу (1966) установява, че до 210 °С PbZrO₃ е ромбичен, между 210 – 220 °С – тетрагонален, между 220 – 235° С – тригонален, а над 235 °С – кубичен. Други автори (Kamba et al., 2002) сочат, че над ~ 508° С той кристализира в кубичната сингония – O_h¹, а под тази температура в ромбичната - D_{2h}⁹. Според (Pastro and Condrate, 1973) под 505 °С PbZrO₃ е в ромбична сингония и пространствената му група е C_{2v}⁸ – Pba2, а над тази температура тя е O_h¹ – Pm3m. Параметрите на елемен-тарната клетка на ромбичния PbZrO₃ (Chatto-padhyay et al.,1998) са: a_o 0,5884 nm, b_o 1,1768 nm, c_o 0,822 nm.

Експеримент

На основата на вещества с чистота р. и р. а. - оксиди и карбонати чрез твърдофазов синтез са получени минерали от перовскитовата група и сродни на тях минерали с обща формула $A_{2,x}B_2O_6$, където А - Са, Ва, Sr и Pb, а В - Ti, Nb, Zr и Sn. Изходните вещества са взети в количества, съответстващи на стехиометричните формули на съответните перовскити.

Технологията на получаване на перовскитите включва: смилане на масите → пресуване → синтез на перовскитите → смилане и хомогенизация → пресуване → изпичане. Синтезът на перовскитите се осъществява в температурния интервал от 900 до 1300° С, а изпичането им от 1200 до 1500 °С.

Рецептният състав и температурата на изпичане ($T_{изп}$) на изследваните перовскити се дава в табл. 1. Дифрактограмите на титанатите, ниобатите, станатите и цирконатите са представени на фиг. 1 ÷ 4, а резултатите от рентгено-структурните изследвания - в табл. 2 ÷ 15..

Таблица 1.	
Рецептен състав на	а перовскитите

Оксиди	Състав, мас. %	Т _{изп} , °С
CaO	41,24	1350
TiO ₂	58,76	1550
SrO	56,47	1350
	Оксиди CaO TiO₂ SrO	Оксиди Състав, мас. % CaO 41,24 TiO2 58,76 SrO 56,47

	TiO ₂	43,53	
PbTiO ₃	PbO	73,64	1200
	1102	26,36	
BaTiO	BaO	65,75	1350
Barro3	TiO ₂	34,25	1000
ScNIGO	SrO	43,86	1250
	Nb ₂ O ₅	56,26	1350
	PbO	62,68	1000
PDNDO3	Nb_2O_5	37,32	1200
0.0.0	CaO	27,12	4500
CaSnO₃	SnO ₂	72,88	1500
0.0.0	SrO	40,74	4000
SrSnO₃	SnO ₂	59,26	1300
DhCnO	PbO	59,69	1100
P05003	SnO ₂	40,31	1100
BasaO	BaO	50,43	1200
DaonO ₃	SnO ₂	49,57	1300
CaZrO	CaO	31,28	1500
	Zr O ₂	68,72	1500
Sr7rO	SrO	45,68	1500
SrZrO ₃	ZrO ₂	54,32	1500
	PbO	64,43	1200
	ZrO ₂	35,57	1200
BaZrO ₃	BaO	55,44	1500
	ZrO ₂	44,56	1300

Фиг. 1. Дифрактограми на CaTiO₃ (1), SrTiO₃ (2), PbTiO₃ (3) и BaTiO₃ (4)

Фиг. 2. Дифрактограми на SrNbO₃ (5) и PbNbO₃ (6)

ГОДИШНИК на Минно-геоложкия университет "Св. Иван Рилски", том 47 (2004), свитък I, ГЕОЛОГИЯ И ГЕОФИЗИКА

Фиг. 4. Дифрактограми на CaZrO $_3$ (11), SrZrO $_3$ (12), PbZrO $_3$ (13) и BaZrO $_3$ (14)

Таблица 2.

Перовскит СаТіОз

°20°	d, nm	I/I _o	hkl
23,05	3,8586	20	110
33,20	2,7128	100	020
38,99	2,3101	8	121
40,61	2,2216	8	022
47,38	1,9188	57	220
58,82	1,5700	22	132
59,18	1,5613	33	024
69,35	1,3551	15	224

Таблица 3.

Tay	Таусонит SrTiO ₃						
	°20°	d, nm	I/I。	hkl			
	22,60	3,9344	11	100			
	32,30	2,7716	100	110			
	39,86	2,2617	61	111			
	46,44	1,9552	78	200			
	57,80	1,5952	70	211			
	67 72	1 3837	42	220			

Таблица 4.

Македонит PbTiO₃

	3		
°20°	d, nm	I/I。	hkl
21,18	4,1949	43	001
22,66	3,9241	72	100
31,42	2,8472	100	101
32,40	2,7633	76	110
39,24	2,2959	72	111
43,40	2,0850	18	002
46,44	1,9554	45	200
49,52	1,8407	14	102
51,64	1,7700	15	201
52,40	1,7461	14	210
55,30	1,6613	24	112
57 16	1 6115	52	211

Таблица 5.

BaTiO₂

a١	103			
	°20°	d, nm	l/lo	hkl
	22,36	3,1729	32	001
	31,60	2,8289	100	101
	39,00	2,3075	55	111
	44,94	2,0171	25	002
	45,42	1,9950	38	200
	51,22	1,7820	16	201
	56,36	1,6310	48	211
	66,01	1,4142	22	202

Таблица 6.

SrNbO₃

 1003				
°20°	d, nm	l/l _o	hkl	
13,12	6,7482	18	010	
15,12	5,8598	7	100	
17,06	5,1975	19	011	
20,67	4,2972	18	110	
21,96	4,0476	12	002	
22,90	3,8836	24	111	
25,40	3,5067	40	012	
26,78	3,3290	85	020	
27,82	3,2069	44	102	
29,33	3,0453	97	021	
29,62	3,0160	39	112	
31,14	2,8722	50	120	
31,56	2,8349	74	200	
32,40	2,7633	100	121	
33,56	2,6704	17	201	
33,84	2,6489	9	003	
34,84	2,5752	7	022	
37,24	2,4145	14	103	
38,07	2,3638	10	202	
38,30	2,3501	12	122	
39,24	2,2959	9	113	
40,40	2,2327	10	030	

ГОДИШНИК на Минно-геоложкия университет "Св. Иван Рилски", том 47 (2004), свитък I, ГЕОЛОГИЯ И ГЕОФИЗИКА

Бозаджиев Л. и др. ТВЪРДОФАЗОВ СИНТЕЗ НА ...

41,08	2,1621	46	220
42,80	2,1129	18	023
43,76	2,0687	14	130
44,00	2,0580	15	221
46,08	1,9698	79	123
46,70	1,9451	53	032
48,86	1,8640	37	213
50,46	1,8086	26	310
52,72	1.7348	24	024
53,36	1.7154	15	302
54,02	1.6960	25	223
54,72	1.6760	21	040
55,80	1.6461	17	220
56,78	1,6200	52	123
57,48	1,6019	14	140
57,80	1,5938	10	231
58,60	1,5735	11	141
59,16	1,5603	30	015

Таблица 7.

PbNbO₃

NO3			-
°20°	d, nm	I/I _o	hkl
14,00	6,3203	13	101
25,28	3,5254	8	008
28,24	3,1574	59	202
29,38	3,0375	100	203
33,68	2,6588	84	206
37,28	2,4099	10	212
37,80	2,3779	10	208
47,58	1,9090	41	307
48,94	1,8595	90	221
51,10	1,7859	9	311
56,16	1,6364	22	317
57,98	1,5893	68	403
58,40	1,5788	41	404
60.54	1.5280	23	309

Таблица 8.

CaSnO₃

°20°	d, nm	I/I _o	hkl
22,76	3,9037	90	100
32,30	2,7692	100	110
40,08	2,2477	11	111
46,14	1,9656	68	200
51,95	1,7598	34	210
57,22	1,6086	48	211
67,22	1,3915	19	200

Таблица 9.

SrSnO₃

. • J			
°20°	d, nm	l/l _o	hkl
22,16	4,0080	21	100
31,52	2,8359	100	110
38,18	2,3551	14	111
45,07	2,0102	63	200
55,94	1,6423	65	211
65,52	1,4238	29	220

Таблица 10. *PbSnO*₃

°20°	d, nm	۱/I。	hkl
14,34	6,1712	7	110
19,72	4,4930	8	111
24,50	3,6302	7	201
27,02	3,3971	100	002
28,90	3,0867	22	220
31,98	2,7961	60	221
32,56	2,7476	71	310
33,92	2,6405	49	202
35,16	2,5502	35	311
37,20	2,4149	8	320
40,02	2,2510	13	222
40,98	2,2004	7	003
41,40	2,1791	10	400
43,66	2,0714	8	401
44,14	2,0500	11	330
46,48	1,9528	15	420
47,42	1,9155	8	213
51,02	1,7885	32	223
51,86	1,7615	30	303
53,25	1,7190	43	313
54,58	1,6828	6	422
58,86	1,5676	35	521
60,00	1,5405	12	440
62,02	1,4951	10	530
63,98	1,4539	10	600
64,84	1,4367	16	304
64,96	1,4343	11	610
66,94	1,3966	8	442
68,52	1,3682	15	433

Таблица 11.

BaS<u>nO₃</u>

 - 0			
°20°	d, nm	l/l _o	hkl
30,90	2,8914	100	110
38,10	2,3599	9	111
44,12	2,0508	36	200
54,72	1,6760	9	211
64,16	1,4507	16	220

Таблица 12.

CaZrO₃

- 0			
°20°	d, nm	l/lo	hkl
22,30	3,9831	89	010
31,30	2,8553	66	110
31,74	2,8167	100	011
39,50	2,2794	7	111
45,38	1,9960	95	020
50,46	1,8070	20	102
50,95	1,7908	43	$11\overline{2}$
51,68	1,7672	17	102
55,60	1,6515	42	$11\overline{2}$
55,94	1,6423	38	$12\overline{1}$
56,55	1,6260	34	121
56,82	1,6189	62	211
64,82	1,4371	9	$20\overline{2}$
65,94	1,4154	30	022
67,02	1,3952	9	202

SrZrO₃

Γ	°20°	d, nm	l/l _o	h k l
Г	21,84	4,0660	17	100
	31,10	2,8732	100	110
	38,36	2,3445	46	111
	44,42	2,0377	90	200
	50,55	1,7908	98	210
	64,48	1,4439	56	220
	68,66	1,3658	10	221

Таблица 14.

PbZrO₃

°20°	d, nm	l/l _o	hkl
21,50	4,1295	26	002
30,66	2,9134	100	200
38,30	2,3480	47	202
43,80	2,0651	59	004
47,06	1,9293	8	301
54,14	1,6926	81	204
57,20	1,6091	9	303
63,16	1,4708	30	400
67 80	1 3810	10	402

Таблица 15.

BaZrO₃

- 0			
°20°	d, nm	I/I _o	hkl
21,40	4,1486	18	101
30,32	2,9453	100	110
37,24	2,4124	22	111
43,40	2,0832	89	200
48,70	1,8681	6	210
53,70	1,7054	94	211
62,76	1,4792	48	220

Дискусия

По твърдофазов път в температурния интервал от 900 до 1500 °С от вещества с квалификация р. и р. а. са синтезирани перовскити и сродни на тях съединения. Индексирането на дифрактограмите на получените титанати, ниобати, станати и цирконати се извърши с помощта на компютърна програма (Фиг. 1 ÷ 4 и табл. 2 ÷ 15), а идентифицирането им – чрез еталонни дифрактограми по ASTM.

Калциев, стронциев, оловен и бариев титанат

СаТіО₃, перовскит (d, nm): 0,270 – 0,191 – 0,156 (08 – 0091); Рстп; а₀ 0,537 nm, b₀ 0,764, с₀ 0,544 nm (Табл. 2).

- SrTiO₃, таусонит (d, nm): 0,283 0,231 0,200 (05 0626); Рm3m; а₀ 0,391 (Табл. 3).
- PbTiO₃. македонит (d, nm): 0,390 0,284 0,276 (06 0452); I4/mcm; a_o 0,390 nm, c_o 0,415 nm (Табл. 4).
- BaTiO₃ (d, nm): 0,283 0,231 0,200 (05 0626); P4mm; a_ 0,399 nm, c_ 0,404 nm (Taбл. 5).

Стронциев и оловен ниобат

SrNbO3 (d, nm): 0,305 – 0,277 – 0,294 (28 – 1247); P212121; ao 0,569 nm, bo 0,668, co 0,806 nm (Табл. 6).

PbNbO₃ (d, nm): 0,306 – 0,267 – 0,315 (43 – 0960); P3m1; $a_{\rm o}$ 0,747 nm, $c_{\rm o}$ 2,835 nm (Табл. 7).

Калциев, стронциев, оловен и бариев станат

- CaSnO₃ (d, nm): 0,279 0,394 0,198 (31 0312); Рm3m; а₀ 0,393 nm (Табл. 8).
- SrSnO₃ (d, nm): 0,285 0,165 0,202 (22 1442); Рm3m; a₀ 0,403 nm (Табл. 9).

PbSnO₃ (d, nm): 0,325 – 0,281 – 0,266 (04 – 0550); I4/mcm; a_{\circ} 0,874 nm, c_{\circ} 0, 661 nm (Табл. 10).

BaSnO₃ (d, nm): 0,291 – 0,168 – 0,206 (15 – 0780); Pm3m; a₀ 0,411 nm (Табл. 11).

Калциев, стронциев, оловен и бариев цирконат CaZrO₃ (d, nm): 0,283 – 0,201 – 0,401 (35 – 0790); Pm3m; а₀ 0,399 nm (Табл. 12).

- SrZrO₃ (d, nm): 0,291 0,290 0,205 (44 0161); Рm3m; а₀ 0,409 nm (Табл. 13).
- PbZrO₃ (d, nm): 0,293 0,294 0,170 (35 0739); Pm3m; a₀ 0,390 nm (Табл. 14).
- BaZrO₃ (d, nm): 0,297 0,171 0,210 (06 0399); Pm3m; a₀ 0,419 nm (Табл. 15).

Структурата на перовскита CaTiO₃ е псевдоизометрична. В нея всеки калциев атом е обкръжен от 12 кислородни атома, а титановите атоми – от 6 кислородни атома. От кристалохимична гледна точка, вземайки в предвид размерите на йоните изграждащи структурата, критерият за устойчивост на перовскитовата структура за синтезираните съединения от типа ABO₃ е в границите от 0,8 до 1,1. Вижда се, че синтезираните от нас перовскито с обща формула ABO₃ (Табл. 16) имат стабилна перовскитова структура.

Таблица 16.

Критерии за	устойчивост	(t) на	перовскитовата
структура			

структура	-		
ABO ₃	t	ABO ₃	t
CaTiO₃	0.86	CaSnO₃	0.82
SrTiO₃	0.93	SrSnO₃	0.89
PbTiO₃	0.96	PbSnO₃	0.91
CaTiO₃	1.04	CaSnO₃	0.98
SrNbO₃	0.92	CaZrO₃	0.77
PbNbO₃	0.93	SrZrO₃	0.84
		PbZrO ₃	0.85
		CaZrO₃	0.93

Заключение

По твърдофазов път са получени минерали от групата на перовскита и сродни на тях съединения. Синтезираните минерали са идентифицирани посредством рентгеноструктурния анализ. Чрез програмен комплекс са индексирани дифрактограмите на перовскитите и са уточнени параметрите на елементарните им клетки..

Литература

- Бережной, А. С. 1970. *Многокомпонентные системы окислов*. Киев, Наукова думка, 394 с.
- Герасимов Е., А. Герасимов, А. Атанасов, В. Тошев, Д. Петков, Д. Иванов, Л. Георгиева, Л. Павлова, Н. Дренска, П. Винаров, П. Петров, С. Бъчваров, С. Панова, С. Багаров, С. Сербезов, С. Стефанов, С. Джамбазов, Т. Стойкова, Т. Датскова, Х. Берлинов. 2003. Технология на керамичните изделия и материали. С., ИК "Сарасвати", 939 с.

Костов, И. 1993. Минералогия. С., Техника, 733 с.

- Миркин, Л. И. 1961. Справочник по рентгеноструктурному анализу. М., Физматгиз, 437 с.
- Михеев, В. И. 1957. Рентгенометрический определитель минералов. т.1, Ленинград, Госгеолтехиздат, 429 с.

- Beckers, L., F. Sanchez, J. Schubert, W. Zander, Ch. Buchal. 1996. Epitaxial growth of Y-doped SrZrO₃ films on MgO by pulsed laser deposition – In: J. Appl. Phys., 79, 6, p. 3337 -3339
- Chattopadhyay, S., P. Ayyub, V. R. Palkar, M. S. Multani, S. P. Pai, S. C. Purandare, R. Pinto. 1998. *Dielectric properties of oriented thin films of PbZrO₃ on Si produced by pulsed laser ablation* In: Journal of Applied Physics, 83, 12, 7808 7813
- Hahn T., H. Wondratschek. 1994. *Symmetry of crystals*, Introduction to international tables for crystallography, Vol A, Lecture notes provided to the summer school of Gjuletchitsa, Bulgaria, 78 p.
- Haun, M. J., T. J. Harvin, M. T. Lanagan, Z. Q Zhuang, S. J. Jang, L. E. Cross. 1989. *Thermodynamic theory of PbZrO*₃ In: Journal of Applied Physics, 65, 8, 3173 3181
- Kamba, S., E. Buixaderas, T. Ostapchuk, J. Petzelt. 2002. Ferroelectric soft modes and dynamic central modes near some phase transitions – In: Ferroelectrics, 268, 1, 163 -169
- Matsubara S., S. Miura, Y. Miyasaka, N. Shohata. 1989. Preparation of epitaxial ABO₃ perovskite – type oxide thin

*films on a (100) MgAl*₂O₄/S*i* substrate – In: J. Appl. Phys., 66, 12, 5826 - 5832

- Othmer K. 1969. Encyclopedia of chemical technology, vol 20, 414 p.
- Pasto A. E., R. A. Condrate. 1973. *Raman spectrum of PbZrO*₃ – In: J. Amer. Ceram. Soc., 56, 8, 436 - 438
- Peng N., J. T. C. Irvine, A. G. Fitzgerald, 1998. Synthesis and crystal structure of tilt perovskite Sr_{0,97}NbO₃ during high temperature powder diffraction spectroscopy – In: J. Mater. Chem. 8, 4, p. 1033 – 1038
- Sánchez P., A. Stashans. 2001. Computational study of structural and electronic properties of superconducting Ladoped SrTiO₃ – In: Philosophical Magazine, 81, 12, 1963 – 1977
- Tennery, V. J. 1966. *High temperature phase transitions in PbZrO*₃ In: J. Amer. Ceram. Soc., 49, 9, 483 486
- Zelezny V., M. F. Limonov, D. Usvyat, V. V. Lemanov, J. Petzelt, A. A. Volkov. 2002. Soft mode behaviour of incipient ferroelectfic perovskite CaTiO₃ – In: Ferroelectrics, 272, 3, 113 -118

Препоръчана за публикуване от катедра "Минералогия и петрография", ГПФ