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ABSTRACT 
The author offer Alfa-stable geostatistical model providing the answers to problems: what accuracy of an estimate of reserve of mineral raw material, with what can 
appear increase of extracted economically cost effective reserve and so on. The model is geostatistics imitative and is founded on the empirical characteristic of 
allocation of contents of extracted builders in deposits. From many possible probability models of the separate object most representative are the Alpha-stable 
probability distribution. These distributions have asymmetry and very wide right tail, i.e. they are successful replacement of lognormal distribution. It is known, that 

lognormal distribution, while, and is unique, on the basis of which the geostatistical theory designed. The offered model consists of some main sub models. The 
variogramm sub model is clone to correlation function of symmetric Stable random process. 3D kriging sub model designed on the basis of optimization of estimates 
on values alpha, which is obtained from input data set through a modified method of Press. If the outcomes satisfy the requirement, it is possible will be connected: to 
a sub model of efficiency of prospecting drilling, to a sub model of economy of prospecting operations, to a sub model of the market of the capitals and others, bound 

with the concrete tasks. On the basis of offered the theory designs a software environment and a mining deposits are treated given. The obtained outcomes are 
widely made comments in a context of accuracy and reliability of the obtained estimates. The preliminary outcomes allow assuming, that the offered Alfa-stable 
geostatistical model is promising improvement of a number of geostatistical models. In a major degree it is possible to consider this model empirically justified. The 
value of model is possibility combination of our model with expert estimates with the purposes of creation of more objective prognoses of expected increases of 

mineral resources in unexplored objects. 

 
INTRODUCTION 

 
Zolotarev in this monograph on stable laws developed [44] a 

method for stochastic modeling further referred as Model with 
Point Sources of Influence (MPSI). There also he discussed 
various possible applications of the MPSI in finance, 
astrophysics, hydrodynamics, etc. [44]. The method is very 
suitable for modeling chaos medium (cf. [17]).  

 
In this paper we present a new approach in which, a 

stochastic medium characterized by a Point Sources of 
Influence with a Poissonian density. The assumption of 
Poissonian distribution is quite asset returns common in the 
field of finance, ore field geology [3], [10], [7], [9], hydrogeology 
[28]. In these areas, the study of various real phenomena 
involves sampling and measuring of their properties, e.g. asset 
return volatility. The most common characteristic of these data 
sets is the large values of sample variation as well as the 
unimodal-asymmetric shape of the probability distribution (i.e. 
a small part of the sample data values has very high values, 
while the large part is characterized with very low values). This 
phenomenon was extensively analysed by Mandelbrot [22] and 
Mittnik and Rachev [25], [26], [27], Bakardjiev [3]  

 
It is generally accepted that the choice of the probability 

distribution functions (pdf's) should be based on the principles 
and the hypotheses through which the real data sets are 
described. The most popular hypothesis is the so-called Law of 
the Proportional Action, which leads to a lognormal distribution 
of the sample data [1]. This hypothesis is almost canonized. 
Indeed the log-transformation reduces significantly the 
variation and changes the shape of the sample distribution, so 
it looks like normal distribution. Unfortunately in most cases, 

especially in geological data, the standard  2-analysis for the 
first and second order errors rejects the lognormal assumption.  

 
Mandelbrot [22] showed that an acceptable alternative is the 

Stable (Paretian) probability distributions. These distributions 
are asymmetric and possess heavy tail. Unfortunately, most of 
the stable probability distributions (with few exceptions) have 
no analytical representation. The increments of the process are 

also -stable:      1..  ffxx
d

tt , and this 

contradicts with all existing parametric Kriging procedures. 
Moreover, it is not guaranteed that the mean exists, while the 
variation is always unbounded. Also, the difference between 
the stable and lognormal distributions is detectable only for 
significant number of sample observations (greater than 
10000). These are the main reasons that the stable 
distributions are not very popular for processing of real data, 
see the discussion in [25] and [26].  

 
The monographs of Zolotarev [44] and Samorodnitsky and 

Taqqu [35] increased the interest to stable laws for stochastic 
modeling of real-nature processes (for financial modeling see 
also [34]).  

 
In this paper we present some promising numerical 

applications of the MPSI. The obtained numerical results seem 
to describe a very good approximation of the stochastic 
behavior mainly observed in real processes.  
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BRIEF REVIEW ON STABLE LAWS 
 
The stable distributions were introduced by Paul Levi [21].  
 
By definition, a univariate distribution function  F(x) is stable 

if and only if its characteristic function has the form  
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And  

 ,0,11,20  

 
The stable distribution is completely determined by four 

parameters  , ,   and   where:  

 is called the characteristic exponent. It measures the 

"thickness'' of the tails of -stable distribution. The smaller the 

value of , the higher the probability in the distribution tails.  

 is a symmetry parameter. The distribution is symmetric 

about    if =0 and is called symmetric -stable (SS). The 

Gaussian ( =2 any ) and Cauchy ( =1; =0) distributions 

are both SS.  

  is a scale parameter, also called the dispersion. It is 
similar to the variance of the Gaussian distribution. However 

for the Gaussian case ( =2 any ) where 2 is the variance.  

 is a location parameter. For SS  distributions, it defines 

the mean if  ]2,1(  and the median if ].1,0(  

 

It is simple to be shown that if a random variable X is SS, 
the characteristic function is of the form  

 

   .exp


 tiatt  

 

A -stable distribution is called standard if =0 and =1. If  

X is a stable random variable with parameters  , ,   and , 

then   




1

X  is a standardized variable with 

characteristic component  and symmetry parameter . In this 
case, the characteristic function is further simplified to  

 

   .exp


 tt  

GENERALIZED CENTRAL LIMIT THEOREM 
 
According to generalized central limit theorem, the random 

variable X is the limit in the distribution of normalized sums of 
the form  

 

  nnnn baXXS  /...1  

 

where nXXX ,...,, 21  are i.i.d. and if and only if n  

the distribution of X is stable. If the Xi's have finite variance, 

then the limit distribution is Gaussian. However, if Xi's are with 

or without finite variance, then the limit distribution is -stable.  
 
 

THE MODEL OF POINT SOURCES OF INFLUENCE (MPSI) 
 
From a modeling point of view, the MPSI may be viewed as 

an analysis of the interactions in a Poissonian ensemble of 
random shocks, see [44]. The Poissonian ensemble (PE) of 
points is defined by a random countable system of points in the 

area 
nV  . Suppose V1 and V2 are disjoint sets in V with 

finite volumes denoted by 1V and 2V  and satisfying the 

following conditions:  
 
The number of the points in the areas V1 and V2 (N1 and 

N2, respectively), are independent random variables.  

 

The probability  kNP 1 for k=0,1,2… depends on k  

and 1V , but not on the shape of V1.  

 
If the volume of V1 decreases to zero, the probability for two 

or more points in V1 is negligible in comparison with the 

probability for exactly 1 point in V1that is,  
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where  0  is a constant defined as a mean density of 

the points in the area. It is indeed well known, see for example 
[44]) that the random function N1 has Poissonian distribution:  

 

 
 

,
!

exp
1

k
kNP

k 
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where the parameter (the intensity) 1V . For different 

set of points,  can be different. The intensity  can be 
expressed by the mean number of points in the area and 

therefore  is a measure;      2121 VVVV  . In 

this case,  is the density of  with respect to the Lebesgues' 
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measure on 
n . With an additional homogeneity assumption, 

  becomes constant.  
 
We define MPSI by a countable array of random pairs  

,,...,2,1,, 1NiMx ii  possessing the following 

properties:  

ix  re points from the PE;  

 

The random variables iM  are independent, uniformly 

distributed and independent in the Poissonian ensemble;  
 

The number of points 1N  in any area of finite volume 1V ,  

the point locations ix  and the parameters characterizing the 

points iM  are independent random variables.  

 

The ensemble      ,;,...,;,; 2211 ii NN MxMxMx is 

called a regular marked point process and the variables 

iNMMM ,...,, 21 are called marks.  

 
Assume that the PE of points is defined in the area 

nV  . It can be also assumed that there are local 

disturbances in any point of the PE. The points produce ''field 
of influence'' based on ''law of influence''. The influence is 
called ''point source of influence'' and the law is called 
''influence function''. In the general case, the influence function 
is defined as  u(x, y, M), where x is the location of the point, y 
is the location influenced by the point, M and is the intensity of 
the influence. The quantities x,y  and M are vectors.  

 
The main task of the MPSI is the analysis of: 
 

  iii Myxu ,,  

 

where EPxi   for  i=1,2,…,N1. So we are interested in 

characterizing the random field of influences caused by the 
entire Poissonian ensemble of disturbances. For simplicity, we 
can assume that the coordinate system's origin is in y, i.e.:  

 

 



PEx

ii

i

Mxu ,  

 

The sum field  determined by all the PE of random shocks 

in area V can be analyzed as a boundary of the combined field 
in the increasing series of subareas of V. Denote by SR the 

sphere in 
n  with a center at the origin and radius  R and let 

RR SVV  . The number of PE points in VR is NR and 

these points generate the field  
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The combined field   produced by the whole PE is defined 

as the weak limit  
 

R
R




lim  

 
To show the existence of the above limit, it is enough to 

check the limiting behavior as R of the characteristic 

function  
 

     n
RR ttiEt  ,,exp  

 
see [44], where general conditions for the existence of the limit 
are derived.  

 
Recall now that the most important features of the MPSI are 

the following two facts:  
 
The PE of disturbances; and the functions of influence 

 Mxu , determine the disturbances.  

 
We should emphasize that the PE leads to a Poissonian-

summation scheme that guarantees the infinite partitioning of 

the random variable  . The functions of influence  Mxu ,  

are used only for definition of the measure 

    *A
dxdMPA , where A is Borel subset of 

nV  and     .;:,* AMxuMxA   If we use 

point sources of influence that do not possess Poissonian 
distribution, the corresponding results will be quite different 
from ours.  

 
 

STABLE RANDOM FIELDS 
 

Consider the 2D plane with points defined by the 
coordinates t1 and t2. A characteristic x is a function of the 

space coordinates t. If  tx  is a random function it can be 

considered as a 2D-random field. The change of the 
considered random function along a straight line will form a 
random process that can be called a section of the random 
field. However, it will no longer be of the type of the model .  

 
The random field is determined by the distribution of the 

random field values  tx  in n any points of the considered 

area      ttxtxtx ,...,, 21 . If this distribution is multivariable 

stable, it is possible to refer the field as a stable field, see [35]. 
The model is applicable in this case with little modifications for 
the memory function.  

 
In the most general case the stable fields are heterogeneous 

and highly anisotropic (the variance among sections of the 
random field is very high), i.e. the field section properties 
depend on not only of the location but also on the direction. But 
there are also isotropic fields (sections of the random field are 
independent on the direction). An isotropic homogeneous field 

with a section defined by -stable motion can be defined as an 
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-stable Levy field, determined by the index of stability  and 

the scale parameters w or .  
 
For illustration coincide the Brownian motion of particles in 

2D-constant gradient field. Along a line perpendicular to the 
direction of the gradient we can count the number of particles 
passing through a series of line intervals with a constant 
length. If the Brownian motion was absent (only a gradient 
flow) the particle density distribution is uniform. As a result of 
the Brownian motion, the particle density distribution becomes 
Gaussian. When the process is defined the point sources of 
influence, depending on the parameters, the particle density 
will deviate from the Gaussian model and often becomes 

closer to an -stable process; in some intervals the particle 
density can reach very large values - a typical picture of -stable 
density.  

 
 

STUDY OF THE SCALAR FIELD OBTAINED BY THE MODEL 
OF THE POINT SOURCE OF INFLUENCE 

 
The computer program, implementing the proposed 

algorithm, outputs data for the local potential field for each time 
step of the particle movement. Using this information we can 
create 3-D kriging models. Very important is the problem of 
creating three-dimensional maps. In most cases the maps are 
plotted on the base of regular grid of measurements; in our 
case the measurements are located randomly. So we have to 
define a regular grid within our area of study and to interpolate 
the values in the grid points using our randomly located 
measurements. The procedure is based on the inverse 
distance method using the Euclidean Dik distances between 

the interpolation (k) and observation () points:  
 

 
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/

1

1








n

i

a
ik

n

i

a
iki

k

D

DY

Y  

 

where kY is the interpolated value at the k th grid point, iY is 

the measured value in the i-th observation point,  is equal to 

1 or 2.  
 
In the literature there are many versions and modifications of 

the weight function. For example, the so-called J. Matheron 
geostatistical method [23] [24] uses for this purpose the 
variogram function, which is similar to the structure function 
defined by Kolmogorov [20]. The common point among all 
methods is the determination of weighted average.  

 
In some cases we can attempt to solve the direct problem, in 

other --- the reverse problem. It is obvious that for the reverse 
problem, the determining average value is a bad function. In 
our opinion, this approach has serious drawbacks, although 
there are opposite opinions (cf. [29], [11], [13] and [42]). On the 
other hand, in many cases the original data seems to follow the 
stable distribution and, as it was mention above, this is a 
plausible model for processes with point sources of influence.  

 
 

METHOD OF EVALUATING THE VECTOR FIELD 
 
Apparently, the already mentioned inverse problem involves 

the evaluation of the potential at a random point using discrete 
measurements of the field. With real data, the problem of 
dispersion is of great importance. Typically, the range of the 

geo-chemical data is within 
07 1010 

, which in fact 

implies almost infinite variation. Log transformation of the data 
significantly reduces the variation.  

 
The analysis of the values shows that for most of the 

chemical elements the expected value and value of  differ 
significantly. This difference can produce significant errors 
when we analyze anomaly areas characterized with higher or 
lower concentrations.  

 
The proposed method for data processing is very simple and 

gives reliable results. In the general case, the method 
procedure includes the following steps:  

 

Evaluation of the parameters  and   for the characteristic 

function of symmetric -stable (SS) distribution using sets 
with limited number of observations ( < 100). The applied 
method is an optimized version of the method of Press [4]. 

 

Determination of the correlation function of SS process 
using the data along a section of space.  

 
Development of modified version of 3D kriging simulation 

based on a weight function w(r) defined as 

       ,1,,/1 rwyxDrw yarC
where r  is the 

correlation function of SS  of process, D  is distance 

between a ii xy ,  pairs, and C is a scale dependent constant. 

Optimizing weight coefficients w(r) stability to . 
 

Simulation of 3D SS space data using the method of Point 
Source of Influence (MPSI) proposed by Zolatorev:  

 

Poassonian of points ix with  density is generated in the 

simulation volume. The existing permeability observations are 
included in the assemble by means of Poassonian density 
screening [10];  

1. For each point ix  SS random values iM  with  mean 

are generated;  

2. For each point ix  an influence function is defined  

  yarC
yxDu ,/1 where r is the correlation 

function of SS  process;  

3. For each point  iy  (located on structured or unstructured 

grid within the simulation volume) the estimated value iz  

is defined as  
ix iiii Myxuz ,, .  

4. Check stability of  in original and simulation data  
 
The pilot outcomes three dimension  Alpha Stable Kriging 

are shown accordingly on Fig. 1, 2, 3. On the first figure is 
shown model, which is founded on reference tools of three-
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dimensional simulation, in a case utilized of possibilities of the 
program Rock Works. is it's visible that the model is very 
chaotic. On next figures is shown model on a basis Alpha 
Stable Kriging. The model is very well compounded with the 
substantial geological data, which is compounded with 
outcomes shown on next Figure (3). Cross Validation shows, 
that Alpha Stable Kriging is a successful formalism for an 
estimate of a mining deposit.  

 
 

CONCLUSION 
 

The obtained results have methodological importance and 
give the basis for development of the method, so it can allow 
us to develop better model representations of complex natural 
processes.  

 
The method application to difficult equations of a gradient 

will require further researches, to take into account processes, 
arising in 3D models, in particular occurrences of forces of 
interaction.  

 
The results obtained in this paper allow us to assume, that 

the inclusion parameterization of geological processes will not 
render of influence to adequacy of application base MPSI. 
However, a more detailed research on this problem within the 
framework of complete stochastic models is required.  

 
Use of this engineering for construction of common model 

MPSI is represented perspective, though already in zero 
approach there are questions, on which at present there is no 
answer.  

 
The proposed method can be considered as a new 

technique for modeling and evaluation of processes with heavy 
tailed distributions.  

 
The computer experiments show that the method can be 

applied in many areas of modeling real phenomena --- physics, 
geology, environmental studies, hydrology, etc.  

 

 
 

Figure 1. Here is shown 3D model on base Inverse distance 
method. It is visible, that the geological object (Mining deposit 

Kremikovtci) is rather random 
 

 
 

Figure  2. Here is shown 3D model on base alpha stable 
kriging method. It is visible, that the geological object (Mining 

deposit Kremikovtci) is rather compact and the zones such as '' 
of Mining poles '' are planned 

 

 
 

Figure  3. Here is shown cross validation matching between 
the original data (horizontal axes) and estimation in the same 

points on base alpha stable kriging method (vertical axes). It is 
visible, that the correlation very good, that is model has no a 

problem from calibration.. 
 
The proposed approach for solution of the inverse problem 

is at initial level of development, as there are no additional 
tests of its applicability. For now, it is tested and verified only 
for geostatistical data. The approach effectiveness is due to 
the new formalism for calculation of the correlation distance 
among the observations. In the classical geostatistics the 
solution is obtained using the classical variogram. Except for 
the Stable modification of the variogram for the Gaussian 
model, all other variogram models are useless. This conclusion 
is very important for the methods of image processing and map 
generation. 
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