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ABSTRACT. Agricultural monitoring is among the priorities of operational remote sensing. The application of hyperspectral data to precision 
farming is related to the supply of information on crop growth and to the possibility of yield prediction. This paper presents the results of a study 
aimed at the implementation of multispectral and multitemporal data in wheat crop assessment models. 
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РЕЗЮМЕ. Аграрният мониторинг е сред приоритетите на дистанционните методи. Използването на хиперспектрални данни за цалите на 
селското стопанство е свързано с получаването на информация относно развитието и състояниетона посевите и възможността за 
прогнозиране на добивите. В работата са представени резултати от изследвания за приложението на многоспектрални данни в модели за 
оценка на състоянието на пшенични посеви и прогнозиране на добива. 

 

 
Introduction 

Remote sensing is an important source of information in 
environmental sciences. Agricultural monitoring is among the 
priorities of Earth observations supplying early information on 
crop growth and state (Thenkabail, 1992; Bouman, 1991). 
Various approaches have been implemented to provide 
quantitative information for crop behaviour assessment and 
yield prediction (Thenkabail et al., 1994a; McMurtrey et al., 
1994). On the other hand, continues the research to improve 
the reliability of the results by implying different sampling 
strategies and statistical data analysis, by integrating agro-
meteorological and remotely sensed data from various sources 
(Bouman, 1991; McMurtrey et al., 1994; De Brisis et al., 1991).  
 

A major application of remote sensing involves the 
characterization of agricultural vegetation canopies using 
multispectral measurements (Thenkabail et al., 1994b; 
Rundquist, 2002). Spectral data collected over vegetative 
targets are analyzed to estimate key agronomical variables 
which are bioindicators of crop state. Monitoring of farmland 
dynamics during plant growth period is performed with the goal 
to track crop development and forecast crop production. 
 

In this paper, we investigate an approach for providing crop 
state assessment and yield forecasts. The study has been 
carried out over field-grown winter wheat. High-resolution 
visible and near-infrared spectral data have been acquired at 
different moments throughout plant ontogenetic season, along 
with ground-truth data on crop parameters, such as leaf area 
index, biomass, density and others. 

 

Materials and methods 
The main attention in the study was concentrated on the 

following work: • development of phonologically–specific 
regression models between crop spectral reflectance and 
biophysical properties; • development of yield forecasting 
models from single-date and time-accumulated spectral data; • 
establishment of relationships between plant bioparameters 
and yield. The first step is used for the estimation of crop state 
variables from radiometric data and along with the third one for 
accuracy assessment and verification of spectral yield 
predictions performed by the second set of models. 
 

In-situ high-resolution visible and near-infrared reflectance 
data have been acquired throughout the growing season, 
along with detailed measurements of crop bioparameters. 
These data served to establish empirical relationships between 
crop reflectance, agronomic variables, and grain yield. The 
relationships have been used to estimate crop bioparameters 
from airborne remotely sensed spectral data. The retrieved 
crop bioparameters have been implemented then into yield-
predicting models. 
 

In validation purpose, the prediction results have been 
compared to the results from using ground-truth biophysical-
yield models as well as with the prediction results of using 
reflectance features temporal behavior in yield assessment. 

 
The present study was taken for winter wheat field-grown 

crops. Crop spectral and growth data were acquired throughout 
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the growing period at the main phenological stages. Plant 
parameters were recorded per unit area basis and comprised 
vegetation canopy cover (C), leaf area index (LAI), plant height 
(h), stem number (N), fresh and dry total Mw, Md and leaf 
biomass ML, MLd. The in-situ spectral measurements were 
performed with a portable multichannel radiometer within the 
400-800 nm wavelength band. 
 

Various ratio vegetation indices (Qi et al., 1994; Dusek et 
al., 1985; Li et al., 1993; Kancheva, Borisova, 2006a) were 
calculated from spectral data and related to crop parameters 
through regression analysis. Some of them are presented in 
Table 1. Such spectral indices are a more stable baseline to 
detect crop growth variations than reflectance factors in single 
bands. They exploit the contrasting high and low reflectance in 
specific for green vegetation spectral bands (G – green, R – 
red, NIR – near infrared). 
 
 
Table 1. Vegetation İndices (VI) 

№ VI № VI 

1 (NIR-R)/(NIR+R) 11 (G-R)/(G+R) 

2 NIR/R 12 G/R 

3 G.NIR/R 13 NIR/(G.R) 

4 (NIR-G)/(NIR+G) 14 G/(G+R+NIR) 

5 NIR/G 15 R/(G+R+NIR) 

6 (NIR-R)/NIR 16 NIR/(G+R+NIR) 

7 (G-R)/G 17 (NIR-G)/R 

8 (NIR-G)/NIR 18 [(G-R)/(G+R)+0.5]0.5 

9 NIR/(G+R) 19 [(NIR-R)/(NIR+R)+0.5]0.5 

10 R/(NIR+G) 20 [(NIR-G)/(NIR+G)+0.5]0.5 

 

Spectral-biophysical relationships were established relating 
crop variables and yield to spectral predictors (vegetation 
indices). Yield models linking crop production with plant 
agronomical variables were obtained as well. All statistical 
relationships were derived for particular crop development 
stages. Temporal spectral data gathered throughout the 
growing season were analyzed as well. They were correlated 
with pant state deviations and crop yield. 
 
 

Results and discussion 
In order to obtain predictors of crop state and yield, 

spectral-biophysical models were developed relating crop 
bioparameters and yield to different spectral indices. High 
correlations and good correspondence were found between 
predicted and actual (ground-truth) values. 
 

In Table 2 and Table 3 results of the correlation and 
regression analyses of wheat bioparameters and yield at 
different phenological stages are given. High correlations were 
obtained as well at other development stages (tillering, 
heading, ear-filling). The correlation kept high at plant ‘green’ 
stages before full maturity. The empirically derived 
relationships between plant bioparameters presented in Table 
4 give additional possibilities for multivariative crop state 
assessment and prediction verification. 
 
 

Table 2. Correlation between wheat bioparameters and yield 
at stem elongation  (1) and milk ripeness (2) stages 

 C LAI Mw Md ML MLd N 

1 0.95 0.89 0.9 0.84 0.87 0.88 0.79 

2 0.86 0.9 0.86 0.87 0.84 0.86 0.76 

 
To be pointed out is the phenologically-based modeling 

which means that spectral-biophysical relationships have been 
fitted at different ontogenetic stages of plant growth. This 
allows the best observation time to be picked up, improves the 
predictive accuracy of the models and provides for early crop 
diagnostics. 
 
Table 3. Yield prediction models from wheat bioparameters 
at two phenological stages 

stem elongation heading 

predictor model a b R2 a b R2 

C a+bx 24.44 483.2 0.9 18.56 496.9 0.9 

Mw ax+bx2 344.9 -55.58 0.91 162.9 -12.32 0.92 

Md ax+bx2 1443 -863.6 0.89 466.7 -97.02 0.9 

N a+bx -7.341 0.338 0.63 -32.71 0.338 0.82 

ML a+bx 78.49 400.9 0.76 72.34 843.2 0.87 

MLd a+bx 34.62 2211 0.78 50.13 2792 0.84 

 
Table 4. Regressions between wheat parameters as 
changing during plant advanced growth 

predictor variable a b R2 

stem elongation 

C Mw -0.073 2.007 0.90 

C ML -0.042 0.999 0.93 

Mw LAI 0.306 2.694 0.92 

heading 

C Mw 0.298 4.067 0.94 

C ML 0.198 0.478 0.98 

Mw LAI 0.058 0.847 0.88 

milk ripeness 

C Mw -0.07 4.296 0.77 

C ML -0.024 0.495 0.79 

Mw LAI 0.016 0.475 0.9 

 
Agricultural species are dynamic systems whose 

parameters change during plant growth. This imposes 
modeling to be performed at different stages of plant 
development. The changes of the relationships depict the 
temporal behavior of crop bioparameters with plant 
physiological changes. Thus, the relationship between the 
vegetation fraction and leaf biomass reflected the increase of 
LAI during the vegetative stages and its decrease with plant 
maturing (Thenkabail et al., 1994a; Kancheva, Borisova, 
2006a). Spectral features are higher correlated with green 
vegetation canopies and this correlation decreases towards 
crop maturing. In Table V the fitted models of wheat grain yield 
(Y, kg/dca) on crop parameters and two spectral indices at 
heading stage are given. 

 
Figure 1 illustrates the application of biophysical (a) and 

spectral (b) data for yield prediction. This example, along with 
Figure 2, shows the good correspondence between the two-
fold predictions. 
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Table 5. Empirical relationships of wheat spectral index VI 1, 
growth parameters and yield at crop heading stage 

variable model a b R2 

Mw exp(a+bx) -1.4 3.3 0.86 

LAI exp(a+bx) -1.6 3.73 0.89 

Y a+bx -323 960 0.91 
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Fig. 1. Biophysical (a) and spectral (b) yield prediction models for 
winter wheat crops at heading stage 

 

 
Fig. 2. Correspondence between the actual and predicted yield 
from airborne-acquired NDVI (●) and ground-measured LAI (○) 
at wheat milk ripening stage 16 YLAI = 68.23 + 0.91YVI 1  (R2=0.97) 

 
VI 1 (called Normalized Difference Vegetation Index - 

NDVI) is the most commonly used but other two or three-band 
spectral ratios are usable as well (Thenkabail et al., 1994b; Qi 
et al., 1994; Kancheva and Borisova, 2007). Some of the best 
performing within our study indices is listed in Table 6 to 
present their significant correlation with plant bioparameters 
and yield. The preliminary correlation analysis of the acquired 
spectral data (Table 6) showed that vegetation indices were 
confidently related to plant parameters through a big portion of 
the growth season. Crop yield is highly correlated with VIs. 
 

Table 6. Correlation of vegetation indices with wheat yield and 
bioparameters at milk ripeness stage 

VI C Mw Md N h LAI ML Y 

1 0.94 0.81 0.78 0.89 0.95 0.85 0.71 0.91 

2 0.97 0.95 0.90 0.93 0.82 0.91 0.97 0.93 

4 0.88 0.90 0.88 0.71 0.88 0.92 0.94 0.87 

5 0.86 0.89 0.84 0.95 0.70 0.85 0.94 0.87 

6 0.94 0.86 0.84 0.84 0.86 0.87 0.74 0.94 

8 0.81 0.85 0.83 0.71 0.87 0.92 0.92 0.87 

9 0.95 0.94 0.89 0.79 0.93 0.98 0.95 0.92 

10 -0.93 -0.84 -0.83 -0.83 -0.84 -0.84 -0.71 -0.92 

12 0.86 0.74 0.72 0.77 0.71 0.71 –– 0.85 

13 0.77 0.64 –– 0.78 0.78 0.84 0.84 0.79 

14 -0.70 -0.76 -0.73 –– -0.79 -0.89 -0.90 -0.78 

16 0.95 0.93 0.90 0.83 0.93 0.96 0.90 0.95 

 
The same was confirmed by the results of the regression 

modeling. Through simple regression, each vegetation index 
was related to each crop state variable. At sample dates before 
full maturity the results showed statistically significant 
relationships for most of the examined VIs. In such a way, crop 
parameters which are descriptors of wheat canopies can be 
reliably estimated from multispectral data. 

 
Very strong correlation was found between the temporal 

cumulative behavior of some spectral indices and crop yield as 
seen from Table 7. 

 
Table 7. Linear yield prediction models from VI temporal sum 
throughout the whole wheat development season 

VI a b R2 

1 -554 136 0.95 
2 -296 13 0.95 

11 40 174 0.91 
16 -363 2 0.88 

 
Figure 3 presents the yield prediction model from VI1 

(NDVI) values sum throughout the whole growth season from 
emergence till full maturity. Temporal spectral indices distinctly 
monitor and depict differences and variations of cropland state 
during plant development. 

 

 
Fig. 3. Empirical relationship between wheat yield and the whole-
season temporal sum of VI1 
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Conclusions 
The proposed approach for crop growth and yield 

assessment is developed on a well-known basis which exploits 
the close relationships between vegetation biophysical 
variables and spectral reflectance features. Good 
correspondence has been found between ground-truth data 
and crop state assessment and yield prediction made from 
spectral measurements. The valuable aspect of the work is the 
verification of the spectral predictions through the 
implementation of ground-truth derived spectral-biophysical 
models and seasonal time-dependent relationships. The 
results highlight the capability of the approach to track the 
dynamics of crop growth and show the accuracy of the 
predictions. More work is intended to examine the effects of 
the site-specific and environmental conditions on the 
robustness of the models. 
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