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Abstract: Solving the equations of fluid flow in ring shaped networks or in complex compressed air networks, requires a great amount of calculus. Therefore using 
computer program for this task is a must. Even so, the great amount of data and the complexity of fluid flow produce a great number of iterations, using most of the 
hardware resources of the computer. The paper presents possibilities of modeling the complex compressed air networks, in order to increase the speed of calculus 
and reduce the amount of hardware resources needed. 

 
 
МОДЕЛИРАНЕ НА СЛОЖНИ ПРЕНОСНИ СИСТЕМИ СЪС СГЪСТЕН ВЪЗДУХ С ОГЛЕД ПОДОБРЯВАНЕ СКОРОСТТА НА 
МЕТОДИТЕ ЗА ИЗЧИСЛЯВАНЕ 
Йон Доса 
Петрошански университет, Петрошани, Румъния 
 
РЕЗЮМЕ: Решаването на уравненията за движение на флуидите в затворени транспортни системи или в системи със сгъстен въздух, изискват голям брой  
сложни изчисления. Ето защо е крайно необходимо използването на компютърна програма за решаването на тези задачи. Дори и при тези обстойтелства, 
голямо количество данни и сложността на движението на флуидите се получава много повторения, използвайки повече хардуерни способи на компютъра. 
Статията представя възможностите от моделиране на сложните преносни системи със сгъстен въздух, за да се повиши бързината на изчисляване и 
намали необходимото количество на хардуерните възможности.  

 

Introduction 
 
   Compressed air networks are complex structures due to their 
construction and the complexity of the compressed air flow in 
the network. The solutions for the equations of compressed air 
flow applied to networks in case of flow with friction, heat 
transfer and flow loss, can be obtained merely using numerical 
methods. These methods require a great volume of calculus. 
Therefore, the calculus of complex networks can be done only 
if the development of a computer program is considered.  
 
   The case of a mining compressed air network is studied, 
which by reason of his complexity, represents a special case of 
compressed air network.  
 
    Constructive peculiarities for such networks (Dosa, 1998): 
 
   - Developing as the mine site evolves. Therefore the length 
of the network, his structure and the gas flow is constantly 
changing.  The network structure became more complicated 
with lots of rings, rings with common edges, and all these 
alternating with embranchments. 
   - Must follow the mine works, resulting elbows, deviations 
and multiple embranchments. 
   - The ducts can’t be welded, so the pipelines must be joined 
through flanges, therefore the flow losses can’t be eliminated. 
   - The maximum length of pipelines that can be entered in 
underground is 6 m, a great number of joints resulting; 
therefore the flow losses are high.  

   - There are hard exploitation conditions. The pipelines and 
fixtures can be damaged, so that the local pressure drops and 
the flow losses will grow. The corrosion of the pipelines is 
marked, which leads to the growth of the rugosity.  
 
 

Mathematical model of compressed air network 
 
   Developing the mathematical model of compressed air 
networks, must start from the definition of his functional role, 
settlement of his limits, identification of its components and the 
relations that exist between these. 
 
   The compressed air network must be able to transport the 
compressed air from the compressor to consumers assuring 
the optimum operation parameters for these.  
 
   The limits of the system are represented through the outlet 
section of the buffer reservoir (compressors with piston) or the 
outlet section of the last cooler (turbocompressors) 
representing the inlet section of the network, the inlet section of 
the consumers representing the outlet section of the network 
and the lateral area of the pipelines. 
 
   The compressed air flows from the compressor through the 
inlet section of the network toward the consumer (through the 
outlet section of the network) with friction, heat transfer and 
flow loss through lateral area of the pipelines.  
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   The discreet components of the compressed air network 
from the point of view of this analysis are (Burducea and Leca, 
1974; Leca at al. 1984): 
 
   - Pipelines and ducts which are the rectilinear elements of 
the network; 
   - Fittings used for modification of the section of flow, 
changing the direction of flow and the realization of the 
necessary embranchments. 
   - Fixtures that allow and direct the compressed air flow 
through pipelines, and also might adjust the parameters of the 
compressed air.  
   - Assembling parts that assure the connecting of components 
of the compressed air network. 
 
   Joining of these elements and their location in ground 
defines the structure of the compressed air network. 
 
   For modeling the structure of the compressed air network the 
representation of network as ordinary graph with the property 
that the maximum number of adjacent of a node is 4, is 
proposed. 
 
   According to the nodes of the graph different type of nodes of 
the network were defined: 
   - Compressor node – corresponding to the compressor (or 
an injection point in the network) with the property that has only 
one adjacent; 
   - Embranchment node – corresponding to the 
embranchments of network, can have 3 or 4 adjacent.  
   - Consumer node - corresponding to the pneumatic 
consumer, can have only one adjacent. 
 
   Transom of the compressed air network, was defined as the 
physical succession of the discreet components of the network 
lined up between two nodes and corresponds the edges 
defined by two nodes in the ordinary graph.  
 
   The compressed air pipeline was defined as the succession 
of ducts joined through one of the known methods (flanged, 
welded, etc.) having the same diameter, lined up between two 
discreet components (section lift, faucets, diaphragms etc.) 
 
   Conclusively, the mathematical model of the compressed air 
network shall have two components: 
   - The algorithm of determination the structure of network, that 
describes the relations between different elements, the way of 
go through and the succession of calculus for the parameters 
of flow through the discreet elements of the network. 
   - Mathematical models for the calculus of parameters of 
compressed air flow through the elements of the network like: 
pipelines, faucets, elbows, flaps, valves, diaphragms, 
embranchments etc.  
 
   The analytic determination of parameters of the compressed 
air flow through pipelines is possible through solving of the 
fundamental equations of gas dynamics singularized for 
compressed air networks.  
   Starting from the equations of gas dynamics applied to 
compressed air networks (Irimie and Matei, 1994):  
   - The continuity equation: 
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  - The energy equation: 
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- Equation of state: 
 

TR=p      (4) 

 
relations in which: w is the average speed in section [m·s-1], T - 
fluid temperature [K], Tm -surrounding temperature [K], p – fluid 
pressure  [N·m-2], d – hydraulic diameter of the duct [m], ρ – 
density of the fluid [kg·m-3], λ – friction coefficient, K – global 
heat transfer coefficient [W·m-2·K-1], a – flow loss coefficient 
through leakiness. 
 
   From the relations (1), (2), (3), (4) above (Irimie and Matei, 
1994): 
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in which A and B: 
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   The coefficients having the sign “-“ for the calculus of 
transoms in the sense of fluid flow and the sign “+”  for the 
calculus in opposite direction of fluid flow. 
 
   For numerical solution of the system (5), different methods 
can be applied (Dodescu and Toma, 1976; Larionescu 1989; 
Roşculeţ 1984; Salvadori and Baron 1972; Simionescu 1995). 
In the work (Irimie and Matei 1994) is recommended the use of 
the cubical spleen functions for the approximation of the 
solution of differential equations, due to the convergence of the 
method and steps of iteration that have relatively big values.  
 
   The use of a specific method for solving the differential 
equations of fluid flow in pipelines is important when thinking in 
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terms of speed of the calculus, but also other aspects of 
network structure must be considered when thinking of overall 
calculus speed. 
 
   Because of the great complexity of compressed air networks, 
a great amount of data must be processed to make additional 
calculus related to other structural elements, modeling the 
structure and creating a friendly user interface. These aspects 
are presented as follows. 

 
 

Algorithm for determination of network structure  
 
   For simple network configurations, exists a big variety of 
calculation procedures, their complexity grow up as possibility 
of automate calculus improved, and especially along with the 
appearance of the electronic computers. 
 
   Among first calculation procedures counted the one applied 
of acad. M.M. Fedorov (Ilicev, 1951) in which is considered the 
variation of the state of the compressed air flow in pipelines.  
 
   The state of parameters of the air in any portion of the 
pipeline is determined in function of initial state parameters 
from the beginning of the pipeline. 
 
   The calculus of the network started from the compressor 
station toward to consumers. 
 
   The compressed air network can be projected choosing 
percentage of loss of pressure depending on value of 
admissible loss, so is obtained a minimum for the costs of the 
pipeline and the energy.  
 
   Acad. A.P. Gherman proposes the calculus of treelike 
networks from the consumer towards compressor (Ilicev, 
1951). 
 
   In this case the pressure to consumers is the same, and is 
necessary the equalization of loss of pressure along of the 
branches that are not part of their nodes. 
 
   In behold of a computer program realization an algorithm 
(Irimie and Matei, 1994) was developed, that require the 
division of some transoms with invariable geometric 
parameters in supplementary sectors, in order to obtain 
iterations with identical number of steps. Known parameters 
are: the configuration of the network, the length of the 
transoms, the demand of air input for the consumers, the 
temperature and the pressure of the compressed air at the 
outlet of the compressor station, the polytropic exponent of the 
flow on the transom. 
 
   Parameters resulting from calculus: loss of pressure on 
transoms, loss of flow on transoms, losses at the consumers, 
temperature on transom. 
 
   There are calculation procedures for treelike networks fed 
from one source, from two sources, for simple ring networks, 
and ring networks with common edges, for which the 
algorithms are depicted in the works (Burducea and Leca, 
1974; Leca et al. 1986; Sârbu, 1997). 
  

  For ring shaped networks the method of simple iteration or 
Lobacev method and for ring shaped networks with common 
edges the Hardy-Cross method (Sârbu, 1997) are widely used.  
 
   All these methods have a great disadvantage; they can be 
applied to networks with known configuration and in a 
differentiated way. The compressed air networks from 
underground are the result of the development in time of the 
mining works, have a complicated configuration, many 
branches and rings in different zones of the network. 
 
   Conclusively, an algorithm for compressed air networks must 
assure the way of go through the network in the sight of 
calculus and the identification of different sort of configurations. 
 
   Developing the algorithm for the calculus of the compressed 
air networks due to open with choosing the point from which 
the calculus began. According as, there are two possibilities: to 
go from the compressor to consumer, which presupposes a 
great number of iterations, and going from the consumer to 
compressor. 
 
   The second variant was chosen due to the fact that 
mathematical model permits the determination of transom 
parameters calculating from opposite direction of flow, and the 
number of iterations will decrease. 
 
   Is reminded as, the compressed air network is represented 
as an ordinary graph (Cristea et al., 1993; Ionescu Texe and 
Zsako, 1990 ), and in this case the calculus presupposes going 
in depth of the structure of graph, until to reach the consumer 
node. 
 
   Having in sight that a direct method of calculus doesn’t 
exists, due to the complexity of the problem, a method that 
shall solve the problem through partial solutions must be 
found. 
 
   Such method is the Backtracking (Cristea et al., 1993), in 
which the solutions are built progressively. 
 
   Application of the method assumes the definition of stacks 
(static or dynamic) which in shall kept the visited nodes and 
which will be erased only after the nodes are solved.  
 
   An embranchment node can be solved if known at least n-1 
flows where n represent the number of adjacent. 
 
   Applying the principle of mass conservation, the value of the 
missing flow can be found, and on the strength of the flows and 
geometric sizes of the embranchment the resistance (Idlecik, 
1984) and the missing pressure can be found, in assumption 
that the temperature is the same in all branches. 
 
   The ordinary graph defined through the nodes of the network 
and the proper transoms, is represented in the shape of a list 
of adjacent in a database. Although exist another solution of 
representation (Cristea et al., 1993), the choice was made 
since there are no limitations regarding the number of nodes, 
from the computer memory size point of view. In the computer 
memory stood at one time solely the nodes visited and 
unsolved, reducing the size of used memory. 
 



 18 

   For the description of the algorithm of determination what 
nodes belong to a ring, have to start up from the definition 
(Ionescu Texe and Zsako, 1990; Vrânceanu and Mititelu, 1984) 
of strongly connected graph, bi-connected graph and chain. 
 
   A limited chain which leaves from one point and comes back 
in the same point defines a ring. 
 
   The way of go through applied, assures that all the nodes in 
the graph will be visited. 
 
   Is noticed as, if we have rings with common transoms 
(edges), we have a lot of rings in the same structure, therefore 
many different roads from point v to point w, and although at 
one moment the return is happening in a node with visited 
neighbors, not all the nodes visited an unsolved shall belong to 
the same ring. 
 
   From the definition of the bi-connected component of the 
graph results as, any ring represents a bi-connected 
component, and any bi-connected component is due to have at 
least one ring, where through once eliminated one node, exists 
a chain between any among the remnant nodes.  
   Therefore, the first step in the determination of the structure 
of the network is the determination of the bi-connected 
components of the subgraph defined by the visited nodes. The 
algorithm for the determination of the bi-connected 
components of the graph is depicted in the work (Cristea et al., 
1993). 
 
   The determination of the rings from the bi-connected 
subgraph can be achieved using the algorithm of minimum 
distance in graphs (Cristea et al., 1993), modified for the 
concrete established conditions through the definition of the 
subgraph, and applied repetitively until the subgraph has no 
more nodes that are not included in rings. 
 
  The results obtained using the algorithms presented therein 
before can followed using the computer program named 
“REŢEA” (NETWORK), which has an option that permits in 
depth visiting of the graph nodes and the identification of  ring 
components of a graph (compressed air network). 
 
 

Results obtained, conclusions 
 
   The first analysis of the problem revealed, that in case of the 
compressed air network, the description of the nodes and 
transoms, the geometrical characteristics of different elements 
like ducts, elbows, faucets, fixtures etc., a great amount of data 
is used. A program was developed (Dosa, 1998) for 
compressed air network calculus, and includes the algorithms 
presented above, and also has many other features. Once 
nodes of a network defined properly, transoms will be 
generated automatically. After that different elements can be 
added and deleted easily from the transom, names of nodes 
and transoms can be changed. In fig. 1, on the right side all 
available elements for building a transom are given. On the left 
side the composing elements of a transom were listed. Adding 
an element can be done by selecting the element from the right 
side, and than pressing the “Add” button on the middle of the 
screen. 
 

   Nodes or transoms can be deleted or added quickly or  even 
exergetic balance of network can be calculated, using the 
program. 
 
   The program has, for all windows of data input, functions that 
validate the correctness of data entered. Also, for avoiding the 
start of calculus of a network with wrong or absent data, a 
menu for data validation was provided. 
 
   These functions verify the network structure, initial data of 
nodes and transoms for consistency. Each validation function 
creates an error log file that can be consulted for the correction 
of errors appeared, in the file is stipulated clearly the character 
of error. 
 

 
 
Fig. 1. The window for definition of transom 
 

   The parameters of state from nodes and transoms can be 
visualized, pressure drops, flow and the variation of the 
temperature for each element of the network, as well as the 
resistances of every element in network. Also we can have 
clear situation of the exergetic balance of network, on sorts of 
loss, and the exergy lost on each type of network element: 
pipelines, diaphragms, elbows etc. 
 
   After the initial data input and validation of these, calculus 
can start from the menu “Calcule” (Calculus) in which were 
three options “Parcurgere fără calcule” (Inspecting the 
network), “Calcul” (Calculus), “Optimizare reţea” (Network 
optimization). 
   For verification of algorithms a network with two rings having 
a common edge fig. 2 was considered. 

 
 
Fig. 2. Ring shaped network with common transoms 
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   After defining these, from menu “Calcule” (Calculus) choose 
“Parcurgere fără calcule” (Visiting nodes). Results obtained 
were represented in fig. 3.  

 

 
 
Fig. 3. Results for ring shaped network with a common edge 

  
   In fig. 4, a ring shaped network is presented. It can be solved 
from top to bottom using the method of cycling or iterative 
method (Sârbu, 1997), that consist in calculating flow rate 
corrections for transoms until the divergence of the pressure 
drop for the ring is null. 
 
   Equations that can be used for the algorithm of simple 
iteration method (Sârbu, 1997): 
   - flow rate conservation in nodes: 
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in which fj is the residual flow for node j, Qij the transit flow of 
transom ij having sign (+) when enters node j, and (-) when 
leaving node j; qj – concentrated flow rate of the node j having 
sign (+) when entering node and (-) when consumed in node;  
   - the energy conservation on ring: 
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where Δhm is the divergence of pressure drop for the ring m; 
hij longitudinal pressure drop for transom ij; εij the orientation of 
transom (+1) when calculating in the same direction with the air 

flow, (-1) otherwise and (0) for ij m; fm – the piezometric level 

induced by the potential elements of ring m,for simple closed 
rings fm= 0 . 
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where ΔQm is the correction flow rate for ring m, Qij(0) is the 
initial flow rate of the transoms. 
 
  The residual pressure drop on each simple ring for turbulent 
flow is given by the relation:  
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in which Sij is the modulus of hydraulic resistance of transom ij  
 
   The correction flow rate is given by: 
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Fig. 4. Ring shaped network, iterative method 

   Using the algorithm for calculating the network from the 
consumers to compressor, fig. 5, the flow rate of the transoms 
can be obtained from Weissbach-Darcy equation. The direction 
of air flow is from high pressure to low pressure, while in the 
simple iteration method is given by the sign of the flow rate. 
 
   Initial data for calculus: length of the transoms: l12=50 m, 
l23=20 m, l24=50 m, l36=70 m, l35=50 m, l57=40 m, l45=40 m, l48= 
30 m; the diameter of transoms: d12=0.15 m, d24=0.1 m, 
d35=0.1 m, d45=0.05 m, d23=0.1 m, d36=0.075 m, d48=0.075 m. 
The temperature of compressed air T=293 K and the friction 
coefficient λ=0.022 is assumed constant for the entire network. 
 

 
 
Fig. 5. Ring shaped network, bottom to top 

 
   Also the assumption of no flow loss is made, and the density 
of the compressed air is calculated for the medium pressure of 
the transom. For top to bottom calculus, the flow rate of the 
compressor is Q1=1.26 kg·s-1, at the pressure of p1=620,000 
Pa, and the divergence of pressure drop for the ring is 
calculated whit the precision 0.001. 
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   For bottom to top calculus are given: the flow rates of 
consumers: Q6=0.36 kg·s-1, Q7=0.72 kg·s-1, Q8=0.18 kg·s-1, 
and the pressures p6=604,000 Pa, p7= 587,000 Pa, 
p8=615,000 Pa. 
 
   Results given in table 1 show that the results obtained are 
similar; the relative error is approximately 10-3. 
 
Tabel 1 
Results of calculus 

Flow rate  
[kg·s-1] 

Iterative method 
(after 6 iterations) 

Bottom to top 

Q23 0.9314 0.9305 

Q35 0.5714 0.5696 

Q54 0.1486 0.1482 

Q42 0.3286 0.3295 

 
   Conclusively, using the algorithm presented for solving the 
compressed air network from consumer to compressor can 
reduce the amount of hardware resources. Building solutions 
progressively, in the memory of the computer only data needed 
for performing calculus is found.  
 
   Another advantage of going from the consumer to the 
compressor is that in many cases, iterations are avoided. In 
the example above the assumptions (no heat exchange, no 
flow loss and constant friction coefficient for al the ducts) were 
made for illustrating the problem, and showing the potential of 
the algorithm. In real life, in compressed air networks heat 
exchange and flow loss usually occurs, and the friction 
coefficient can vary for different ducts according to the type of 
flow. 
 
   Even so, using the algorithm presented can speed up the 
calculus for compressed air networks, which in real life are 
bigger and more complicated. 
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