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ABSTRACT. In this work we propose a new model to predict the thermal conductivity of composites with enhanced particle concentrations. The model is based on 
the self-consistent scheme. The proposed model is evaluated using great number of published experimental data on the thermal conductivity enhancement of 
particulate composites at great concentration, covering broad ranges of phase thermal conductivity ratios and particle volume fractions. A comparison with a differen-
tial medium model is made. Using the self consistent scheme, upper and lower bounds for such particulate composites are presented. 
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РЕЗЮМЕ. В тази работа се предлага нов хомогенизационен модел за предсказване на термопроводимостта  на композити с повишена концентрация на 
включванията. Моделът е базиран на метода на самосъгласуването и е сравнен с многобройни публикувани експериментални резултати за повишаване на 
термопроводимостта на композити с голямо напълване. Сравнението обхваща голям диапазон на проводимости на фазите, тяхното отношение и 
напълване. Направено е сравнение с модела на диференциалното нарастване на напълването. Представени са горна и долна граници на коефициента на 
ефективната термопроводимост за такива композити. 

 
Introduction 
   To make efficient use of composite materials the variation of 
physical properties with the kind and concentration of fillers 
should be known. One important property of particulate 
composites is the thermal conductivity.  
 
 

General framework 
   The Maxwell equation to the effective conductivity of two 
phase spherical particulate composite without interaction 
between particles can be expressed as follows (Maxwell, 1904) 
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Here mK , pK  and  f  are the thermal conductivity of the 

matrix, the particles and the particle volume fraction 

respectively, mp K/K .  

   An other equation concerning the case of finite particle con-
centration (with interaction between particles) is the 
Bruggeman’s one (Bruggeman, 1035) 
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   Using the so called self consistent scheme, it can be shown 
(Hashin, 1968) that equation (1) represent the lower Hashin-
Strickmans bound for inclusions with arbitrary shape. Thus, the 
Maxwell equation (1) is the best possible for a statistically 
homogeneous and isotropic two phase composite 

if mp KK  . The Bruggeman model has no limitations on the 

concentration of inclusions and can be used for particles 
percolation in suspensions or when the particle concentration 
is sufficiently high (Wang, 2003). Following (Hashin, 1968) and 

(Wang, 2003) it could be expected that if mp KK  , the 

values of )( fKeff  should lie between equation (1) and the 

Bruggeman’s one - equation (2). In other words, equation (2) 
represent the upper bound concerning only spherical inclu-
sions. In this case the above equations (1) and (2) can be 
regarded as lower (without interaction) and upper (wit maximal 
interaction between particles) bounds of the effective conduc-
tivity for composites containing spherical inclusions in the case 
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mp KK  . For such a composites, real conductivity 

enhancement curves must be placed between the curves 
described by equations (1) and (2) - Fig. 1. 
 
   Using the self consistent scheme (particle with radius a 
surrounded by matrix material with radius b, both embedded in 
the effective medium) employed by Hashin (1968), to the ho-
mogenized thermal conductivity curve, placed between curves 
(1) and (2), we can write the following quadratic equation 
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where: 
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Equation (3) has always real opposite sign roots [3]. Because 
of 1c , the positive solution of eq. (3) is obviously    
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If  c = f,  equation (4) coincides with equation (1) – the lower 
bound. If  c = 1, equation (4) coincides with equation (2) – the 
upper bound. Thus, for   
           

1 cf  ,                            (5) 

 
equation (4) lie between the above mentioned bounds – fig. 1. 
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   We need now to estimate this dimensionless parameter c in 
order to obtain reasonable curves to predict the thermal 
conductivity of particulate composites with interaction between 
particles, which take place in the case of enhanced particle 
volume fractions. From fig. 1 one can see that for lower volume 
fractions both equations (1) and (4) coincide. Thus, for lower 
fractions c  must be near to f and for very great volume 
fractions c  must lie near to 1. Moreover from fig. 2 one can 
see that for lower volume fractions both equations (1) and (2) 
coincide. Thus, the relation c(f) must be a concave function as 

nfc  and in the beginning (for lover fractions) this function 

can be very declined in order to move for greater fractions near 
the horizontal limit of 1 – fig. 2. The parameter c  must be also 

  dependent. From the experimental curves listed bellow, it is 

clear that for lower conductivity ratios  , the thermal con-

ductivity enhancement curves lie near to the Maxwell equation 

(1) and vice versa for greater   these curves move near to 

equation (2). Thus, the n parameter must be a convex function 

of   such as )/exp(1)(  k.an   - see fig. 3.  

 
   As has been showed in [5], the saturated conductivity rate of 
inclusion to matrix increases with the volume fraction of the 
dispersed phase raising. The conductivity of inclusion has a 
saturated value for improving the conductance of composite at 
a certain fraction. It means the effective conductivity of 
composite cannot be improved considerably when the 
conductivity ratio comes over this transition point at a definite 
volume percentage.  
 
   Let we finally assume the following equation to describe the 
relation between the parameter c, the volume fraction f and the 

conductivity ratio   
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Fig. 1. Relative thermal conductivity enhancement via particle volume 
fraction.  Lower (equation (1)) and upper (equation (2)) bounds  with 
dashed lines. Continuous thick line – equation (4) with parameter c   
between  f  and 1.                                                                                              

                                                                                               

Fig. 2. Parameter  c  as a function of the particle volume fracion. 
Dotted line  c = 1 (upper bound in fig. 1), Dashed line c = f (lower 
bound in fig. 1), thick line- eq.6  with  f <c<1. 
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   The new proposed equation (4) together with equation (6) 
can be used to predict the thermal conductivity enhancement 
of concentrated particulate composites. By fitting the theo-
retical curves (4) together with equation (6) and the expe-
rimental data demonstrated in sets (1-13), to the parameters  a  
and  k   in equation (6) we obtain the following values: a = 

0.95  and  k = 70, which could be valid for any composite 
phases with spherical particles. 
 
   Bellow we compare our model with different experimental 
data concerning thermal conductivity enhancement of two 
phase particulate composites in the case of great volume frac-
tions. In these figuress we have shown the differential medium 
approach curves proposed in [6], which can be taken in the 
form 
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Here maxf  is the maximum packing volume fraction of 

particles introduced in equation (7) in order to take into account 
the overlap effect. For random packing of spherical particles 

maxf  = 0.637.  

 
 

Comparisons  
   Thirteen sets of data concerning the thermal conductivity en-
hancement of particulate composites at great concentration 
covering broad ranges of thermal conductivity 

ratio mp K/K  are considered in order to evaluate our 

model. In the following we also compare the predictions of our 
model (equation (4) together with (6)) with the model proposed 

in (Pal, 2007) - (equation (7)), assuming maxf = 0.637 

(random packing of particles). The lower and upper bounds 
according to equations (1) and (2) are also shown. In table 1 
we have describe the various composites considered in the 
present work. 
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Set 2 

Fig. 3. Parameter  n  as a function  of the  thermal 

conductivity ratio  :  )/exp(1)(  k.an  .                                                                                             

. 

 

 

Table 1. Characteristics of the composites presented here 
 

Set      filler             matrix     references 
1 Alum. nitride Polyamide   909 Wang, 2004 

2 Cuprum Polyamide 6  1200 Tavman, 1996 

3 Alum. oxide Polystyrene    290 Pal, 2007 

4 Alum. nitride Polyvinylidene fluoride  1666 Pal 2007 

5 Aluminium Epoxy resin  1068 Pal, 2007 

6 Aluminium Parafine oil    200 Pal, 2007 

7 Aluminium Polyethylene    737 Tavman, 1996 

8 Aluminium Polypropylene    992 Pal, 2007 

9 Cuprum oxide Epoxy resin      42 Pal, 2007 

10 Glass Polystyrene        7 Nielsen, 1974 

11 Graphite Polytetrafluoroethylene    643 Cai, 2005 

12 Glass Polyethylene   3.15 Nielsen, 1974 

13 Selenium Polypropylene glycol      37 Baxley, 1966 
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   In the above figures (sets from 1 to 13), the thick line con-
cerns our model - equations (4) and (6), the dotted line 
concerns equation (7) and the dashed lines concern the lower 
and upper bounds according to equations (1) and (2) 
respectively. 
 

 
Discussion 
 

   As one can see the proposed c-function - equation (6) in the 
self consistent scheme - equation (4) can well predict the 
thermal conductivity enhancement of particulate composites 
tacking into account the interacton between spherical inc-
lusions wich is encountred by great volume fractions of inc-
lusions. Our equation agrees a little better than equation (7) 
proposed by Pal (2007) and based on the so called differential 
medium approach. Some desagreement with the experimental 
data – set 9, can be explain by the nonspherical inclusion 
shape (Nielsen, 1974). In sets 10 and 12 our equation 
coinsides practically with the Maxwell one because of the lower 

thermal conductivity ratio  . 
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