IrOANLIHWK HA MUHHO-TEONOXKNA YHUBEPCUTET “CB. UBAH PUNCKIA", Tom 51, Ca. II, Jobus v npepaboTka Ha MuHepanHm cypoBuHi, 2008
ANNUAL OF THE UNIVERSITY OF MINING AND GEOLOGY “ST. IVAN RILSKI", Vol. 51, Part Il, Mining and Mineral processing, 2008

SELF-CONSISTENT SCHEME TO PREDICT THE THERMAL CONDUCTIVITY OF COMPO-
SITES BY FINITE PARTICLE CONCENTRATION
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ABSTRACT. In this work we propose a new model to predict the thermal conductivity of composites with enhanced particle concentrations. The model is based on
the self-consistent scheme. The proposed model is evaluated using great number of published experimental data on the thermal conductivity enhancement of
particulate composites at great concentration, covering broad ranges of phase thermal conductivity ratios and particle volume fractions. A comparison with a differen-
tial medium model is made. Using the self consistent scheme, upper and lower bounds for such particulate composites are presented.
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PE3IOME. B ta3n pabota ce npeanara HOB XOMOreHM3aLMOHeH MOfieNn 3a Npeficka3BaHe Ha TepMOMPOBOAMMOCTTa Ha KOMMO3NTY C MOBULLEHa KOHLIEHTpaLuMs Ha
BKMlouBaHusaTa. MoaemsT e 6asupaH Ha MeToaa Ha CaMOChITIacyBaHETO U & CPaBHEH C MHOrOBPOMHM NyBR1KyBaHW eKCiepUMEHTaNHN Pe3ynTaTii 3a NoBuLIaBaHe Ha
TEpPMOMPOBOAMMOCTTa Ha KOMMO3WUTW C ronsMo HambreaHe. CpaBHeHueTo obxBala ronsM AuanasoH Ha NPOBOAMMOCTM Ha (asuTe, TSXHOTO OTHOLLEHWE W
HambrnBaHe. HanpaseHo e cpaBHeHWe ¢ MoAena Ha AndepeHLManHoTo HapacTBaHe Ha HambiBaHeTo. peacTaBeHy ca ropHa v 4onHa rpaHuLy Ha koeduumMeHTa Ha

efbeKTVIE!HaTa TepMONnpOBOAUMOCT 3a TakMBa KOMMNO3UTH.

Introduction

To make efficient use of composite materials the variation of
physical properties with the kind and concentration of fillers
should be known. One important property of particulate
composites is the thermal conductivity.

General framework

The Maxwell equation to the effective conductivity of two
phase spherical particulate composite without interaction
between particles can be expressed as follows (Maxwell, 1904)

Keff m = K (1+ (1)

)
U(a-1)+ (- )37

Here Km,Kp and f are the thermal conductivity of the

matrix, the particles and the particle volume fraction
respectively, a=Kp/Kp.
An other equation concerning the case of finite particle con-

centration (with interaction between particles) is the
Bruggeman's one (Bruggeman, 1035)
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+a+\/((3f ~2(a-1)+a)? +8a)

Using the so called self consistent scheme, it can be shown
(Hashin, 1968) that equation (1) represent the lower Hashin-
Strickmans bound for inclusions with arbitrary shape. Thus, the
Maxwell equation (1) is the best possible for a statistically
homogeneous and isotropic two phase composite
if Ky > Ky . The Bruggeman model has no limitations on the

concentration of inclusions and can be used for particles
percolation in suspensions or when the particle concentration
is sufficiently high (Wang, 2003). Following (Hashin, 1968) and
(Wang, 2003) it could be expected that if K p > Kp,, the

values of Kgf (f) should lie between equation (1) and the

Bruggeman’s one - equation (2). In other words, equation (2)
represent the upper bound concerning only spherical inclu-
sions. In this case the above equations (1) and (2) can be
regarded as lower (without interaction) and upper (wit maximal
interaction between particles) bounds of the effective conduc-
tivity for composites containing spherical inclusions in the case
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Kp >Km. For such a composites, real conductivity

enhancement curves must be placed between the curves
described by equations (1) and (2) - Fig. 1.

Using the self consistent scheme (particle with radius a
surrounded by matrix material with radius b, both embedded in
the effective medium) employed by Hashin (1968), to the ho-
mogenized thermal conductivity curve, placed between curves
(1) and (2), we can write the following quadratic equation

Ak(c, f)2 —Bk(c, f)-C=0 (3)

where:

A=2(2+c)+a(dl-c0),
B=2(1+2c)+a(l-4c)+9(c-1)f,
C=2(1-c)+a(l+2c),

Equation (3) has always real opposite sign roots [3]. Because
of ¢ <1, the positive solution of eq. (3) is obviously

_ B(c, f,a)

ket = A T.a)

B(c, f,a)° +4A(c, f,a)C(c, f,a)
2A(c, f,a)
If ¢ =f, equation (4) coincides with equation (1) - the lower
bound. If ¢ =1, equation (4) coincides with equation (2) - the
upper bound. Thus, for

f<c<l,

(%)

equation (4) lie between the above mentioned bounds - fig. 1.
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Fig. 1. Relative thermal conductivity enhancement via particle volume
fraction. Lower (equation (1)) and upper (equation (2)) bounds with
dashed lines. Continuous thick line — equation (4) with parameter ¢
between f and 1.
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We need now to estimate this dimensionless parameter ¢ in
order to obtain reasonable curves to predict the thermal
conductivity of particulate composites with interaction between
particles, which take place in the case of enhanced particle
volume fractions. From fig. 1 one can see that for lower volume
fractions both equations (1) and (4) coincide. Thus, for lower
fractions ¢ must be near to f and for very great volume
fractions ¢ must lie near to 1. Moreover from fig. 2 one can
see that for lower volume fractions both equations (1) and (2)
coincide. Thus, the relation c(f) must be a concave function as

¢ = f "and in the beginning (for lover fractions) this function

can be very declined in order to move for greater fractions near
the horizontal limit of 1 — fig. 2. The parameter ¢ must be also
a dependent. From the experimental curves listed bellow, it is
clear that for lower conductivity ratios « , the thermal con-
ductivity enhancement curves lie near to the Maxwell equation
(1) and vice versa for greater « these curves move near to
equation (2). Thus, the n parameter must be a convex function
of o suchas n(a)=1-aexp(k/a) - seefig. 3.

As has been showed in [5], the saturated conductivity rate of
inclusion to matrix increases with the volume fraction of the
dispersed phase raising. The conductivity of inclusion has a
saturated value for improving the conductance of composite at
a certain fraction. It means the effective conductivity of
composite cannot be improved considerably when the
conductivity ratio comes over this transition point at a definite
volume percentage.

Let we finally assume the following equation to describe the
relation between the parameter c, the volume fraction f and the
conductivity ratio «

o(f,a) = f (1-aexp(k/ @)) . (6)
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Fig. 2. Parameter ¢ as a function of the particle volume fracion.
Dotted line ¢ =1 (upper bound in fig. 1), Dashed line ¢ = f (lower
bound in fig. 1), thick line- eq.6 with f<c<1.
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Fig. 3. Parameter n as a function of the thermal
conductivity ratio « : n(a) =1—aexp(k/ax).

The new proposed equation (4) together with equation (6)
can be used to predict the thermal conductivity enhancement
of concentrated particulate composites. By fitting the theo-
retical curves (4) together with equation (6) and the expe-
rimental data demonstrated in sets (1-13), to the parameters a
and k in equation (6) we obtain the following values: a =
0.95 and k = 70, which could be valid for any composite
phases with spherical particles.

Bellow we compare our model with different experimental
data concerning thermal conductivity enhancement of two
phase particulate composites in the case of great volume frac-
tions. In these figuress we have shown the differential medium
approach curves proposed in [6], which can be taken in the
form

(Keff)[Kp -Km
Km Kp—Keff

Jra-ytme )
max

Here fax is the maximum packing volume fraction of

particles introduced in equation (7) in order to take into account
the overlap effect. For random packing of spherical particles
fmax = 0.637.

Comparisons

Thirteen sets of data concerning the thermal conductivity en-
hancement of particulate composites at great concentration
covering broad ranges of thermal  conductivity
ratioa = Ky / Kpy are considered in order to evaluate our

model. In the following we also compare the predictions of our
model (equation (4) together with (6)) with the model proposed
in (Pal, 2007) - (equation (7)), assuming fymax= 0.637
(random packing of particles). The lower and upper bounds
according to equations (1) and (2) are also shown. In table 1
we have describe the various composites considered in the
present work.

Table 1. Characteristics of the composites presented here
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Set filler matrix a | references
1 Alum. nitride Polyamide 909 | Wang, 2004
2 Cuprum Polyamide 6 1200 | Tavman, 1996
3 Alum. oxide Polystyrene 290 | Pal, 2007
4 Alum. nitride Polyvinylidene fluoride 1666 | Pal 2007
5 Aluminium Epoxy resin 1068 | Pal, 2007
6 Aluminium Parafine oil 200 | Pal, 2007
7 Aluminium Polyethylene 737 | Tavman, 1996
8 Aluminium Polypropylene 992 | Pal, 2007
9 Cuprum oxide Epoxy resin 42 | Pal, 2007
10 Glass Polystyrene 7 | Nielsen, 1974
11 Graphite Polytetrafluoroethylene 643 | Cai, 2005
12 Glass Polyethylene 3.15 | Nielsen, 1974
13 Selenium Polypropylene glycol 37 | Baxley, 1966
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In the above figures (sets from 1 to 13), the thick line con-
cerns our model - equations (4) and (6), the dotted line
concerns equation (7) and the dashed lines concern the lower
and upper bounds according to equations (1) and (2)
respectively.

Discussion

As one can see the proposed c-function - equation (6) in the
self consistent scheme - equation (4) can well predict the
thermal conductivity enhancement of particulate composites
tacking into account the interacton between spherical inc-
lusions wich is encountred by great volume fractions of inc-
lusions. Our equation agrees a little better than equation (7)
proposed by Pal (2007) and based on the so called differential
medium approach. Some desagreement with the experimental
data — set 9, can be explain by the nonspherical inclusion
shape (Nielsen, 1974). In sets 10 and 12 our equation
coinsides practically with the Maxwell one because of the lower
thermal conductivity ratio « .

Acknowledgements

Financial support by the AUF (project No 6316 PS 821 /
2008) is greatly acknowledged.

This work was supported also by the Scientifical Research
Section of the UCTM - project No 10518 / 2008.



References

Baxley A.L.,Couper J.R. 1966. Thermal Conductivity of Two-
Phase Systems,part IV,Research Report Series No.8,
University of Arcansas (Ed), Arkansas, 239 p.

Bruggeman D.A.G. 1935. , Berechnung verschiedener phy-
sikalische Konstanten von heterogenen Substanzen,
Annalen der Physik, 24, 636-679.

CaiW., Tu S., Tao G. 2005. Thermal Conductivity of PTFE
Composites with Three-dimensional Randomly Distributed
Fillers, J.of Thermopl.Comp. Mater. vol. 18, 241-253.

Hashin Z., 1968. Assesment of the Self consistent Scheme
Approximation: Conductivity of Particulate composites,
Journ. Comp. Materials, vol.2, 3, 284-300.

Maxwell J. A. 1904. Treatise of Electricity and Magnetism,

Clarendon, 3rd ed., Oxford, 275 p.

Recommended for publication by Editorial board

79

Nielsen L. 1974. The Thermal and Electrical conductivity of
Two-Phase Systems, Ind. Eng. Chem.Fundam.,13,17-20.

Pal R. 2007. New Models for Thermal conductivity of Parti-
culate Composites, Journ.of Reinf. Plastics &Comp., vol
26,7, 643-651.

Tavman I. 1996. Thermal and Mechanical Properties of Alu-
Minium Powder-Filled High density Polyethilene compo-
sites, J. Appl. Pol. Sci. 62, 2161-2167.

Wang B.X. at al., 2003, Int.Journ. Heat&Mass Trans. 46,
2665-2672.

Wang J., YiX., 2004, Comp.Sci.&Tech., 64, 1623-1628.

YinY., Tu S.T. 2002. Thermal conductivities of PTFE com-
posites with Random distributed Graphite Particles
Journ. Reinf. Plast.& Comp. vol.21, 1619-1627.



	Binder1-55.pdf
	14-Hadjov-HTMU


