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ABSTRACT. Obtaining some models of non-linear behaviour of the materials have 2 directions: the study of rheological properties and define of the form of the 
equations for a three-dimensional solicitation. The rheology, the science that study the matter in time, from the point of view of the flow, of the deformations, allows 
obtaining some correlations between stress, deformations and their derivates, and characterize the nature of the components. We will introduce in this paper the most 

complex behaviours, starting from elementary notions and the description of the different criterias which allow the generalization of the obtained equations in three-
dimensional cases. 
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ОТ РЕОЛОГИЯ ДО ПЛАСТИЧНОСТ И ВИСКОЗОПЛАСТИЧНОСТ 
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РЕЗЮМЕ. Получените модели на нелинейно поведение на материалите имат две посоки: изследване на реологичните свойства и определяне вида на 
уравненията за три-измерни системи. Реологията е наука, занимаваща се с проблемите за изясняване на връзката между напреженията и скоростта на 
деформация на различните видове среди (течни и твърди), което позволява получаването на някои корелации между напрежение, деформации и техните 
производни, и характеризира природата на компонентите. В този доклад са разгледани най–сложните поведения, започвайки от най-елементарните, като 

са  описани различни критерии, които позволяват да се обобщят получените уравнения в три-измерни случаи. 
Ключови думи: еластичност, пластичност, вискозитет, реологичен модел, поведение, критерий, втвърдяване 

 
1. Fundamental elementary notions 
 
   The qualitative form of the materials behaviour result after 
realizing some simple tests, allow them to be framed in well – 
defined classes. The fundamental behaviour that could be 
represented through elementary mechanical systems are: the 
elasticity, the plasticity and the viscoplasticity. The most well-
known elements are, fig1:  

- the resort, which symbolizes the linear elasticity for 
which the deformation is reversible and it exists a 
relation between the charging parameters and the 
deformation ones (fig.1.a);  

- the damper, which schematize the linear viscosity 
(fig.1.b) or non-linear (fig.1.c). The viscosity is pure if 
there is a relation between loading and the speed of 
this; if this relation is linear the model is related to 
Newton’s law; 

- the patina, which describe the appearance of the 
permanent deformation if the loading is big enough 
(fig.1.d). If the first step of the permanent 
deformation does not evaluate with the loading, the 
behaviour is perfect plastic and moreover, if the 
deformation between the flow is neglected, the 
model is rigid – perfect plastic. 

 
 

 

Fig. 1. Fundamental notions in the representation of 

behaviour 
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   These elements could be combined, making rheological 
models, which represent mechanical systems, used as a 
support in defining the models. 
   The response of these systems could be thought in 3 
different plans, which allow showing the obtained behaviour by 
a certain type of experiments: 

 hardening or monotone increase of the strain (strain – 

stress plan,  - ); 

 creep or constant loading (time – stress plan, t - ); 

 relaxation or constant strain (time – strain plan, t - ). 
 

2. Uniaxial plasticity 
 
   The association between a resort and a patina in series 
produces a elastic perfect plastic behaviour (fig.2.a) the system 
not being able to support a stress which’s absolute value is 

bigger then y. 

 

 
 
   The characterization of this model is made by considering 

the loading function f, dependent of the only variable , 
defined by: 
 

y)(f       (1) 

 
   The elasticity field belongs the f’s negative values and the 
system’ behaviour resume itself to the following equations: 
- the elasticity field,   if  f < 0 
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   In elastic domain, the plastic strain rate 0p 


, the elastic 

strain rate becoming zero, during the plastic flow. The model is 
without hardening, because the stress’s level varies at the end 
of the elastic field. The model is susceptible to reach infinite 
deformations under a constant loading, leading to the damage 
of the system by excessive deformation. The association in 
parallel, fig.2.b - Prager’s model, of these 2 elements is related 
with a behaviour in which the hardening is present; it is a linear 
hardening and is named kinematical, because it depends of 
the actual value of the plastic strain. In this case, the loading 
function depends of the actual value of the plastic strain. So, 
this function depends of the applied stress and the intern 
stress, X, that characterize the new neutral state of the 
material: 
 

yX)(f      (2) 

 

   The stresses evaluate during the plastic flow, being useful as 
control variables. It always exists the possibility of expressing 
the plastic strain rate according to the rate of the total strain: 
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   It is remarkable to notice that the calculus of the dissipated 
energy during a cycle, produces the same result as the first 
scheme, which indicates the fact that for his type of behaviour 
a part of the energy is temporarily stocked in the material (here 
is the resort) and wholly restituted at downloading. This gives a 
physical illustration of the reversible hardening notion, when 
other rules of cinematic non-linear hardening are accompanied 
by a dissipation of this energy. 
 
   In uniaxial elastoplasticity, the loading – unloading conditions 
are expressed in general case through: 
- the elasticity field if 
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- elastic unloading if 
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- plastic flow  if 
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   In the general case, the H model depends on the strain and / 
or the hardening variables; the value of the plastic model in the 

point (, Ai) is obtained by writing that the representative point 
at the loading during the flow remains on the limit of the 
elasticity field, and the resulted equation is named “the 
coherence equation”: 
 

Fig. 2. Association in series and parallel of the patina 
and resort 
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0)A,(f i 


     (4) 

 
   In these examples, the elasticity field is either fix or mobile, 
its length being conserved. The first case does not need any 
hardening variable, in the second, the X variable occurs and its 
depend on the actual value of the plastic strain which on the 
general case will become a tensorial variable. The type of 
hardening which is related to it is the cinematic hardening 
(fig.3.b). In the particular case illustrated by the rheological 
model, the evolution of the X variable is linear according to the 
plastic strain, this being the model of linear kinematic 
hardening (Prager, 1958). 
 
   Another elementary evolution of which the elasticity field 
could support is the expansion (fig.3.a), related to a material of 
which’s elasticity field records a growth in length, but it remains 
centrated in the origin; it is about an isotropic hardening (Taylor 
and Quinney, 1931), in the f function, the variable R which 
occurs, is the dimension of the elasticity field: 
 

yR)R,X,(f     (5) 

 
   The evolution of this variable is the same, no mather of the 
sign of the cumulated variation of plastic strain, p, a variable 
which’s derivate is equal with the absolute value of the plastic 

strain rate, 


pp  . So, it does not existing a difference 

between p and p while the loading is monotone increase. In 
this case, the verification of the condition means expressing 
the fact that the actual value of the stress on the bound of the 
elasticity field: 

- for kinematic hardening:  = X + y 

- for izotropical hardening:  = R + y 
which means the fact that the evolution law of the hardening 
variable is the one that determines directly the form of the 
extension’s curve. 

 

 
 
   The izotropical hardening is mostly used for important 
deformations (over 10 %). The kinematic hardening continuous 
to play an important role after the unload, even for big 
deformations and it is prevalent for small deformations and the 
cycle loadings, allowing the correct simulation of Bauschinger 
effect, meaning the fact that the elasticity stress in 
compression unloads related to the initial stress as a following 
of a pre-hardening in extension. 
 

3. Viscoelasticity and viscoplasticity 
 
   Viscoelasticity could be well defined through simple models 
Maxwell and Voigt which group a damper in series and in 
parallel (fig.4) or through the utilization of some composed 
models, such as Kelvin – Voigt or Zener (fig.5). The 
particularity of Voigt model is that it does not present instant 
elasticity, its function of relaxation not being continuous and 
derivable on pieces. 

 

  
 
   The Voigt model is not used for relaxation, unless putting it 
under deformation is progressive and because of that, in order 

to effectuate the calculus of structure, it was associated with a 
series resort – the Kelvin – Voigt model. Under the effect of a 

Fig. 5. Examples of composed models 

Fig. 3. Representation of the two types of 
hardening 

Fig. 4. Representation of the simple models Maxwell 
and Voigt 
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stress 0 = const. in time, the deformation goes asymptotic to  

0 / H, meaning that the creep is limitated. In the case of 
Maxwell model the creep’s rate is constant and the 
disappearance of the stress during an experiment is total. By 
adding a simple damper to a simple model, there is the 
possibility to pass easily from a model which has a plastic 
behaviour, independent from time, to a viscoplastic model 
(fig.6), the resulted model being the generalized Bingham 
model. By eliminating the resort in series the viscoplastic rigid 
model is obtained, and by suppressing the resort in parallel, 
there will be no hardening. 
 

 
 
   In the case of a viscoplastic model, there are 2 possibilities to 
introduce the hardening, by conserving the possibilities to 
action either upon the plastic variables – the case of the 
models with additive hardening, or upon the viscous stresses, 
when we talk about the models with a multiple hardening, a 
representative law describing this type of hardening being 
Lemaitre’s law: 
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where K, n, m – the material’s coefficients. 
 

4. Criterias 
 
   The used models, offer a uniaxial loading, shown an 
elasticity field, in the stresses domain and the hardening 
variables, for which it does not exist plastic flow or viscoplastic. 
The trace of this field on the stress axe is limited at a segment 
which can support a translation or an extension, sometimes 
even limited to a point. On the other side, certain models are 
capable to represent a maximum stress, supported by the 
material. The main classes of criterias in writing the model are: 
 

a- criterias in which the hydrostatic pressure does not 
appear (the new criterion von Mises and Tresca); 

b-  criterias which take into account the hydrostatic 
pressure (the criterion Drucker – Prager, Mohr – 
Coulomb, the “closed” criterias); 

c- anizotropical criterias. 
 

4.1. Criterias in which the hydrostatic pressure does not 
appear 
 
   While the trace on the stress’ tensor does not appear, the 
most simple criterion is the one that used only the second 
invariant of the stress’ tensor of J, which is related to an ellipse 
in the space of the symmetric tensors, meaning the von Mises 
criterion: 
 

y
~

J)(f       (8) 

 

y – the elasticity limit in extension. 
 
   This makes the maximum shears to appear in every main 

plan, represented through the quantities (i - j). Specific to 
Tresca criterion is not to keep from these quantities, only the 
highest values. Adding a pressure to each term of the diagonal 
does not modify the criterion’s value. The expression, contrary 
to the von Mises criterion, does not define a regular surface 
(the discontinuity of the normal, angular points): 
 

yji
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   It is interesting to compare these two criterias. Because 
being situated in the space of 6 (or 9) components of the 
stress’ tensor is not an issue, we must see the boundaries of 
the elasticity field in the subspaces with 2 and 3 dimensions. 
The representations are being made: 

a) in extension – shear plan (fig.7.a) the only components  = 

11 and  = 12 not being zero. The expressions of the criterias 
are reduced to: 

- von Mises: y

22 3),(f           (10) 

 

- Tresca:  y

22 4),(f          (11) 

 

b) in the main stresses’ plan (1, 2) (fig.7.b) when the stress 

3 = 0: 
- von Mises: 
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   In a deviatoric plan, the criterion von Mises is represented 
through a circle, which is related to its interpretation, through 
octaedrical shear, the Tresca criterion is represented through a 
hexagon. 
 
c) in the space of the main stresses each of these criterias of 
the main stresses each of these criterias is represented 
through a generating set cylinder (1, 1, 1) in the base of the 
defined curves in a deviatoric plan. 
 

Fig. 6. Bingham generalized model 
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4.2. Criterias in which hydrostatic pressure is take into 
account 
 
   These criterias are necessary to represent the plastic 
deformation of the materials, lands or of the presence of 
fissures, the discontinuities of the materials, expressing the 
fact that a hydrostatic stress of compression it opposes to the 
plastic deformation. One of the consequences of their 
formulation is that they introduce a non-symmetry extension – 
compression. 
 

   The criterion Drucker – Prager is an expansion of the von 
Mises criterion, a linear combination between the second 
invariant and the trace of the stresses’ in a deviatoric plan, 
being a circle: 
 

y
~

IJ)1()(f                   (14) 

 

   The limit of elasticity in extension remains y and in 

compression is - y / (1 – 2 ),  being a coefficient related to 

the material,  = 0 – 0.5 ( = 0  von Mises criterion (fig.8). 
 

  
 
   The Mohr – Coulomb criterion has a certain resemblance 
with Tresca criterion, making the maximum shear to appear, 
but in the meantime the average shear, represented through 
the Mohr’s center circle correspondent to the maximum shear: 
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   This criterion assumes that the maximum shear that the 
material can support (Tt, fig.9.a) is as bigger as the normal 
stress compression is higher. The admitted limit is an intrinsic 
curve in the Mohr plan: 
 

CT)(tanT nt                (15) 

 

where: C – cohesion;  - the internal friction angle of the 

material;  = 0, C  0 – pulverulent material;   0, C = 0 – 
pure cohesive material. 
 

   In a deviatoric plan (fig.9.b) is obtained a non-regular 
characterized through the values: 
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   These two criterias show the fact that the material becomes 
infinite resistant in triaxial compression, behaviour whose not 
generally verified for the real material sensible to hydrostatic 
pressure. In order to simulate on, for example the compaction, 
is reduced to “closed models” in which the limit curve is define 
through two pieces. As an example is the Cam-Clay model 
used for clays which’s limit curve is defined by two ellipses in 
the plan (I1 – J) or the “cap mode” model, which closes with an 
ellipse the criterion Drucker – Prager. 
 

 

Fig. 7. Comparison of the Tresca and von Mises models 

Fig. 8. The representation of Drucker – Prager criterion: a) in the main stress space; b) in the I1 – J plan 
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4.3. Anizotropical criterias 
 
   If the loaded surface of a metallic material is measured 
experimental, it is seen that in the presence of unelastic 
deformations it records an extension, a translation and a 
distortion, the first two modifications being represented by the 
izotropical and kinematic hardenings, the last one not being 
considered by the current models. 
 
   There are anizotropical materials, such as composites 
materials. There are lots of possibilities of expansion of the 
izotropical criterias, in order to describe the anizotropical 
materials. The most general way is the fact that a criterion is a 
function of the components of the stresses tensor in a given 
base. The chosen form must be intrinsic. 
 
   The most general solution generalizes the von Mises 

criterion, using instead of J() the expression: 
 

~~~
B :B:)(J 


                  (17) 

 

which introduces the tensor of 4th order 

B . Choosing for 


B  

the tensor J so that 

 :Js  (


s - the associate deviator for 


 ) is obtain von Mises criterion. 

 
   Through considerations of symmetry, as for the elasticity 

case, the number of free components of the 

B  tensor could 

be reduced. Moreover, from the usual conditions, the 
assurance of the plastic incompressibility must be taken into 
account. If the material has 3 symmetric perpendicular plans, 
the terms are zero and there will only remain 6 components. 
 
 

5. Conclusions 
 
   The general equations which describe one of the materials 
behaviour show the nature of the viscoelasticity, plasticity and 
viscoplasticity models, the last two having in common the 
existence of an elasticity field. 
 
   It must be mentioned the fact that the deformation or the 
plastic flow is momentary, while the flow is being delayed. This 
thing has important consequences in writing the elastic – 
viscous – plastic behaviour. The effects should not be 
neglected, because they are will determined. 
 
   The majority of these effects (the oldening, the interactions 
with the environment, etc.) is well established and represents 
the object of simulations, specific to each studied case. The 
criterias used for describing the behaviour, as well as the flow 
laws, must be chosen according to the studied material, its 
type, the presence of irregularities, fissures, discontinuities, 
structural defects and what is important especially for rocks, is 
their anisotropy. A nowadays case in geotechnic is the one of 
the izotropical materials, which’s criterion must be written 
according to the main normal stresses, which are normal 
stresses and tangential on a perpendicular face on the axe of 
schistosity, meaning a parallel face with the izotropical plan of 
schistosity.   
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Fig. 9. Mohr – Coulomb criterion: a) in the Mohr plan; b) in deviatoric plan 
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