
 211

ГОДИШНИК НА МИННО-ГЕОЛОЖКИЯ УНИВЕРСИТЕТ “СВ. ИВАН РИЛСКИ”, Том 50, Св. II, Добив и преработка на минерални суровини, 2007
ANNUAL OF THE UNIVERSITY OF MINING AND GEOLOGY “ST. IVAN RILSKI”, Vol. 50, Part ІI, Mining and Mineral processing, 2007

ABOUT DATA FRAGMENTATION AND ALLOCATION IN DISTRIBUTED OBJECT
ORIENTED DATABASES

Adrian Runceanu, Marian Popescu,

University Constantin Brâncuşi, Targu-Jiu, Romania; adrian_r@utgjiu.ro; marian@utgjiu.ro

ABSTRACT. In this paper, we present fragmentation and allocation problems in object oriented distributed. Hybrid fragments are defined by applying horizontal
fragmentation followed by vertical fragmentation to each database class.
keywords: object oriented databases, link graph, data fragmentation, data allocation.

ОТНОСНО ФРАГМЕНТИРАНЕ И РАЗПРЕДЕЛЕНИЕ НА ИНФОРМАЦИОННИ ПОТОЦИ В ОПРЕДЕЛЕНИ
ОБЕКТНООРИЕНТИРАНИ БАЗА ДАННИ
Адриан Рункеану, Мариан Попеску
Университет „Константин Бранкуши”, Търгу Жил, Румъния; adrian_r@utgjiu.ro, marian@utgjiu.ro

РЕЗЮМЕ: В тази статия ние представяме фрагментирането и разпределението на проблемите в определени обектно ориентирани. Части от хибрид са
дефинирани чрез прилагането на хоризонтална фрагментация, която е последвана от вертикална фрагментация на всеки клас база-данни.
Ключови думи: обектно ориентирани база данни, свързваща диаграма, фрагментиране (раздробяване) на данни, разпределение на данни

1. Introduction

 Data distribution has largely been studied in the relational
model, but the complex structure of objects and their
relationships make it more difficult for object oriented
databases. Data distribution is carried out by first fragmenting
data and then allocating the obtained fragments to the network
sites. Fragmentation allows grouping data items used together
by applications so as to minimize the I/O ratio. The allocation
of fragments has the primary goal of minimizing the number of
remote accesses which are performed by applications.

 As proposed in [KNM94], the fragmentation methods used
for the relational model may be extended to the object model.
However, as classes are closely related to each other, much
more importance must be accorded to derived horizontal
fragmentation.

 In a relational database, if the instances of a relation R1 are
referenced by those of a relation R2, then R1 are fragmented
based on the predicates of R2. Fragmenting R2 if it is
referenced by more than one relation is however more difficult.
In such a case, must R2 be fragmented based on the
properties of one, some or of all the referencing relations?

 This problem is much more complex when dealing with
object oriented databases because relationships are not only
more numerous but also of different types. Indeed, as
mentioned above, the principle contribution of the object model
is its ability to reflect reality as accurately as possible through
the objects and their relationships. The facilities offered by the
object model in moving from the real-world to the model leads

the designer to a fine “modularization”, which creates in our
sense a great number of classes and relationships and
consequently complicates the fragmentation process.

 The allocation problem is also more complex in distributed
object oriented databases because it must not only deal with
data allocation but with method allocation too. As a method
manipulates only a subset of the attributes and the objects of a
class, it must naturally reside at the site that contains the data
it manipulates.

2. Database fragmentation

 Since the beginning of the 80's, many researchers have been
interested in distributed database design. Technological and
organizational reasons justify this tendency: distributed
databases eliminate many limitations of centralized databases,
and naturally correspond to the decentralized structure of
several organizations. A distributed database can be defined
as a collection of data, which logically belong to the same
system but are distributed over the sites of a computer network
[CP84].

 The design of a distributed database is a complex task
because it requires the comprehension and the resolution of
several related subproblems as data fragmentation (horizontal,
vertical, hybrid), data allocation (with or without redundancy),
optimization and allocation of operations (request
transformation, selection of the best execution strategy,
allocation of operations to sites). The subproblems we consider
are data fragmentation and allocation.

mailto:adrian_r@utgjiu.ro
mailto:marian@utgjiu.ro
mailto:adrian_r@utgjiu.ro
mailto:marian@utgjiu.ro

 212

Objects and fragmentation

 [KNM94] is to our knowledge the first paper which analyses
the problem of object distribution and proposes general
algorithms. It gives an overview of the different problems which
must be solved in the distribution design. As general solution, it
proposes the extension of the relational fragmentation
methods. Other works present algorithm s for fragmenting
object oriented databases. We will describe briefly the
approach followed in each of the algorithms we know.

Horizontal fragmentation. The proposed algorithm uses the
principle of minterm predicates. Both of the inheritance and
aggregation hierarchies are preserved. The principle consists
of producing in a first step primary horizontal fragments for
each of the database classes. The result of this fragmentation
is then used to induce derived fragmentation via inheritance,
composition and method call links. Finally, the algorithm
merges primary and derived fragments with which it has the
highest affinity. The affinity between a primary and a derived
fragment is defined as the frequency at which both are used
simultaneously by applications.
Vertical fragmentation. Vertical fragmentation aims to fragment
a class such as attributes and methods frequently used
together are grouped together. The general approach consists
of first grouping the methods frequently used together in each
class [EB94]. Grouping techniques similar to those used for
attribute grouping in relational are used: method usage matrix,
applications' frequencies, method affinity matrix. Each method
group is then extended to incorporate the attributes used by
the group methods. If an attribute is referenced by methods
which belong to different groups, it is assigned to the one with
which it has the highest affinity.

A. The object data model
 The data in an object based system consists of a set of
encapsulate objects. The concept of object represents an
encapsulation of the attributes that describe data and the
methods that manipulate them. A unique identifier is
associated to each object. Objects with common attributes and
methods belong to the same class, and every class has a
unique identifier. Inheritance allows reuse and incremental
redefinition of classes in terms of existing ones. Parent classes
are called superclasses while classes that inherit attributes and
methods from them are called subclasses. Composition
relationships allow the representation of composite objects
which include other objects as part of them. These are called
component objects. Due to the encapsulation concept, the
access to objects can be performed only by method
invocations. The set of objects that belong to a class
represents its extension. In the inheritance hierarchy, objects
are stored in the most specialized class.

B. The link graph
 The global conceptual schema is composed of a set of
classes and inter-class links. The existence of a link arises due
to some real world relationship which exists between two
classes. Two types of links characterize the object model: the
inheritance links and the composition links.

 We explicit such informations in a “Link Graph” that we
construct from the global conceptual schema and which
constitutes the input to our distribution process. The nodes in
the link graph represent classes and the edges composition
relationships. Given a class Cj and the set of all its subclasses
SUB(Cj), if Cj has an attribute of type Ck, then there exists an

edge from each class belonging to)(jj CSUBC to Ck.

Indeed, as mentioned above, subclasses of Cj inherit both
simple and complex attributes of Cj. An example of link graph
is given in figure 1.

Computer science Mathematics Physics

Course

Is-A Is-A Is-A

Has-A

University

Computer science

Mathematics

Course

University

Figure 1: A Link Graph Example

Physics

 213

C. Transaction modeling
 A user query accessing database objects is defined as a
sequence of method invocations on an object or a set of
objects of classes. A user query Qk is represented

by },...,,{ 21 likiji nMMM , where each M in a user query

refers to an invocation of a method of a class object. It is
assumed that the user has a good notion of the important
transactions that will run against the database, and of the
methods involved in each transaction. We suppose that each
transaction has known execution frequencies for each of the
sites where it may originate, and that data volumes transmitted
between transactions’ methods (parameters and results) can
easily be estimated.

3. An allocation model

 Given a set S of n sites },...,,{ 21 nSSS communicating

via a network and a set F of k fragments },...,,{ 21 kFFF

communicating by method calls, the allocation problem may be
formally described by a function from the set of fragments to

the set of sites, SF : . If fragments are not replicated,

there exists nk possible allocations. A performance criterion
used for comparing the nk allocations is a function

Rf : which associates a cost to each allocation. An

optimal allocation is the one which minimize the cost function.
In general, the optimization process aims to minimize the
transactions’ response time which depends on the I/O ratio and
the communication delays. The expression of the cost function
must be sufficiently simple in order to be easily evaluated and
eventually modern networks.

 However, taking into account all the network characteristics,
especially modern networks, to develop general models yields
generally to non linear functions and consequently complicates
the problem. The allocation process must also take into
account some imposed constraints such as disk capacity. One
may impose for example that the total size of fragments
assigned to a site must not exceed the disk capacity.

 The distributed database system we consider is assumed to
have a set of nodes connected to each other by means of a
communication network. Computer hardware (terminal,
minicomputer, workstation, personal computer) is located at
each node. The hardware need not be identical at each node.
This implies that processing and storage capacity may differ
from one site to another. The nodes of the network can
communicate at a certain cost per unit of data transmitted.
Users of the system have access to fragments that can be
stored at any of the nodes. Each fragment has a unique
identifier, and contains a collection of data and methods. Two

fragments iF and jF communicate if and only if there exists

at least one method of iF invoking a method of jF and/or

there exists at least one method of jF invoking a method

of iF . This is a consequence of object encapsulation.

Transactions in the database are of two types: read-only
queries and update queries. Each query may consist of a
series of method calls to extract the data item values and

present them to the person sending the request. Similarly,
each update could consist of a sequence of methods designed
to extract the data item values and write them back into the
appropriate database after updating them.

A. The parameters

NF = number of fragments
NS = number of sites
i = fragment index, },...,1{ NFi

l = site index, },...,1{ NSl

ri = method r of fragment i
f(ri,sj) = frequency of invoking method s of fragment j by

method r of fragment i
DT(ri,sj) = quantity of data transmitted between method r

of fragment i and method s of fragment j
(parameters + results)

DTF(i,j) = quantity of data transmitted between fragment i
and fragment j

MSi = set of methods of fragment i
FSi = size of fragment i
dlq = transmission cost per unit of data between sites

l and q
STl = cost of storing one unit of data at site l
Ql = storage capacity at node l
Cil = cost of storing fragment i at site l (= FSi STl)
Ciljq = communication cost between fragment i located

at site l and fragment j located at site q

B. The decision variables
We define the following decision variables to formulate the
problem:

.0

,1

otherwise

lsitetoallocatedisifragmentif
xil

C. The objective function
The objective function to be minimized consists of the sum of
communication costs and storage costs.

ql ji i l

ililjqililjqp xCxxCZ
, ,

min

Ciljq is given by the formula :

),(jiDTFdC lqiljq

where

i i j j

ji j i i

i j i j
r MS s MS

j i j i
s MS r MS

DTF(i, j) f (r ,s)DT(r ,s)

f (s ,r)DT(s ,r)

D. The constraints

NFix
NS

l

il ,...,11
1

 (1)

 214

NF

i

lili NSlQxFS
1

,...,1 (2)

)1,0(ilx (3)

 Constraint (1) states that each fragment is allocated to one
site. Constraint (2) ensures that the total size of fragments
allocated to one site doesn't exceed the disk capacity of that
site. Constraint (3) is the binary constraint on the decision
variable.

4. Conclusions

 The allocation problem in its generality is NP-Complete. It
can be solved by using exact methods or heuristic methods.

 Exact methods are based on the exploration of all the
possible solutions. Although they result in obtaining optimal
solutions, they are very costly and are in exploitable for large
problems. An example is the Branch and Bound method.

 Heuristic methods yield to suboptimal solutions. The quality
of a heuristic is measured uniquely by observing the results it
gives, eventually by comparing it with the optimal solution

when it is possible to determine it. In this category, several
algorithms can be enumerated as greedy algorithms [CLR90],
iterative algorithms. Theoretically, these methods do not offer
any performance guarantee, however practical experience
shows that they generate solutions which are generally close
to the optimum, and in reasonable delays.

References

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.

Introduction to Algorithms, 1990.
[CP84] S. Ceri and G. Pelagatti. Distributed databases:

principles and systems. McGraw-Hill, 1984.
[EB94] C.I. Ezeife and K. Barker. Vertical class fragmentation

in a distributed based system. Technical Report 94-03,
University of Manitoba, 1994

[KNM94] K. Karlapalem, S.B. Navathe, andM.M.A.Morsi.
Issues in distributed design of object oriented databases.
In T. Ozsu, U. Dayal, and P. Valduriez, editors, Distributed
object management, pages 148-164.Morgan Kauffman
Publishers, 1994.

[OV99] T. Ozsu and P. Valduriez. Principles of Distributed
Databases, Prentice-Hall, second edition, 1999.

[ZO94] Y. Zhang and M. Orlowska. On fragmentation
approaches for distributed database design. Information
Sciences, 1(3):117-132, 1994.

Recommended for publication by the Editorial board

	39_RUNCEANU_POPESKU

