TOANLWHMK HA MUHHO-TEONOXKNA YHUBEPCUTET “CB. MBAH PUNCKIA”, Tom 50, Cs. Il, [lobus 1 npepaboTka Ha MuHepantm cyposiHi, 2007
ANNUAL OF THE UNIVERSITY OF MINING AND GEOLOGY “ST. IVAN RILSKI", Vol. 50, Part Il, Mining and Mineral processing, 2007

AN OBJECTIVE FUNCTION IMPLEMENTATION IN FRAGMENTATION DISTRIBUTED
RELATIONAL DATABASES

Adrian Runceanu
University Constantin Brancusgi, Targu-Jiu, Romania; adrian_r@utgjiu.ro

ABSTRACT. The design of distributed database design is an optimization problem and the resolution of several sub problems as data fragmentation (horizontal,
vertical and hybrid), data allocation (with or without redundancy), optimization and allocation of operations (request transformation, selection of the best execution
strategy, allocation of operations to sites). Each problem can be solved with some different approach this thing establishing that the project of the distributed
databases to become hard enough. There are many researches connected by the dates fragmentation presented both in the case of relational database and in the
case of orientated database. In this paper is presented the implementation of a heuristic algorithm conceived before that uses an objective function who takes over
information about the administrated dates in a distributed database and it evaluates all the scheme of the database vertical fragmentation.

Abbreviations

Distributed databases, vertical fragmentation.

UMNNEMEHTALMA HA KOHKPETHA ®YHKLUA NPU ®PArMEHTUPAHETO HA CPOOHW BA3A JAHHU
AdpuaH PyHkeaHy
YHusepcumem ,KoHcmarnmun Bpankywu”, Tepey Xun, PymbHus; adrian_r@utgjiu.ro

PE3IOME. MMpoekTbT 3a Cb3aaBaHe Ha pasnpegeneHa 0asa OT 4aHHM e ONTUMM3aLMOHeH Npobrem 1 peluaBaHe Ha HAKOW NOA3ajauy kato parMeHTpaHe Ha
AaHHUTE (XOPU3OHTANHO, BEPTUKANHO WnM XMbpWAHO), pasnpefeneHne Ha AaHHUTE (MPU Hanuyve Ha MoBeYe MNW MOo-Manko WHAOpMaLus), ONTUMU3MPaHe K
pasnpefensHe Ha onepauuuTe (XenaHa TpaHcdopmauuns, n3bop Ha Haii-aobpe W3MbNHeHa cTpaTervsTa, pasnpefeneHneTo Ha AeiHocTuTe no Mecta). Beska
3adaya, KosiTo Moxe fia 6bfje pelleHa Mo HAKOMKO pasniuiHi HaunHa e 0BCTOATENCTBO, KOETO 3aTPYAHSBA W OCLLUECTBABAHETO HA 3aMUCbIIa 33 pa3npefeneH1e Ha
6asaTa AaHHM CTaBa MHOrO TpyAeH. HayyHuTe m3cneaBaHusi, KOUTO CbLUECTBYBAT, CBbP3aHN C (hparMeHTMpaHe Ha WH(OPMALMOHHM MOTOLM, W3MON3BaT KakTo
cryyaunTe CbC CPOAHM (penauuoHnm) 6asa AaHHN, Taka u ¢ opueHTUpaHu 6a3a AaHHW. Tosu Joknaf NpefcTaBs peannsnpaHeTo Ha eBPUCTUYEH anropuTbM, KOWTO €
M3MUCIIEH NPEeau M3NOM3BaHeTo Ha KOHKpEeTHa (YHKLMS, KOSTO Noema MH(opMaLma 3a ynpaBneHcku nepuoau B AadeHa 6asa faHHW 1 0TpassiBa Lianata cxema Ha
BepTUKarnHa hparmeHTaLms Ha MHOpPMALIMOHHI aHHN.

Previous work Since the beginning of the 80’s, many works have adressed
(introduction in vertical fragmentation of dates) the database vertical partitioning problem.

Navathe, Ceri and others [NCWD84] extend the work of
Hoffer and Severance [HS75]. The authors use an attribute
affinity matrix taht they order by using Bond Energy Algorithm
as proposed in [HS75]. However, determining the vertical
fragments is done automatically, whereas it was let the
subjectif judgement of the designer in [HS75]. There are two
steps in the partitioning algorithms. In the first step, the
fragmentation is obtained by appying iteratively a binary
partitioninf algorithm. At this step, no cost factor is considered.
At second step, estimations of cost reflecting the physical
environmemt, are included in order to optimise the initial
fragments. The algorithm complexity is O(n?logn), where n is
number of attributes.

There exits three fragmentation types: vertical, horizontal and
hybrid. Vertical fragmentation consists of subdividing a relation
into sub relations which are projections of the original relation
according to a subset of attributes. The horizontal
fragmentation divides a relation into subsets of tuples based on
selection operations. The hybrid fragmentation consists of
dividing a relation horizontally, and then splitting vertically each
of the obtained horizontal fragments or vice-versa.

Vertical fragmentation is used in order to increase
transaction performance. The more obtained fragments are
close to transaction requirements, the more the system is
efficient. The ideal case occurs when each transaction
matches exactly a fragment, i.e. it needs only this fragment. If
some attributes are always used together, the fragmentation
process is trivial. But in reality applications are rarely faced
with such trivial cases. For relations having tens of attributes, it
is necessary to develop systematic approaches for vertical
partitioning. If a relation has m attributes, it can be partitioned
following B(m) different ways, where B(m) is the mt Bell
number which is almost mm [HN79].

Ceri, Pernici and others [CPW89] propose two tools for
vertical fragmentation: “DIVIDE” and “CONQUER”. The tool
‘DIVIDE” performs only data fragmentation and allocation; it
implements the partitioning algorithm proposed in [NCWD84].
The tool “CONQUER’”, in addition to data fragmentation and
allocation, ensures the optimisation and allocation of
operations.

207

Navathe and Ra proposed in 1989 a graphical tehnique of
partitioning [NR89]. The attibute affinity matrix is considered as
a complete graph where nodes represent attibutes and edges’
weights represent the affinty values. The algorithm, by
successively adding edges, generates all the fragments in one
iteration by considering a cycle as a fragment. The algorithm
has a complexity of O(n2), where n is number of attributes, and
has the advantage of not using an objective function.

Lin, Orlowska and others [LOZ93] extend the work of [NR89]
on graphical partitioning. The input to the algorithm is the
affinity graph. They proposed searching a subgraph of at lest
two nodes for which affinity values are greater than those of
each incident edge.

Chakravarthy, Muthuraj and others [CMV94] have develop a
partition evaluator which evaluates the partition quality by
using two costs: the access cost to the irrelevant local
attributes (present on the execution site of the transaction but
not used by the transaction), and the access cost to the
irrelevant remote attributes (not present on the execution site
of the transaction but necesary for its execution).

This partition evaluator is implement in this paper.

Input to the Vertical Partitioning Algorithm

The input to the Vertical Partitioning algorithm that we are
going to explain is an Attribute Usage Matrix (AUM).

Algorithms such Bond Energy Algorithm, Binary Vertical
Partitioning algorithm and Ra’s Algorithms use the Attribute
Affinity Matrix (AAM) formed from the Attribute Usage Matrix
(AUM). Attribute affinity measures the bond between two
attributes of a relation according to how they are accessed by
applications. Attribute affinity between attribute i and j is given
below:

T

Affij = > at,ij)
i=1

where quj is the number of accesses of transaction t

referencing both attributes i and j.

The input assumed is a relation (consisting of a set of
attributes) and an attribute usage matrix (AUM({, j)) which con-
sists of the attributes(j) in a relation as columns and the
transactions(t) as rows with the frequency of access to the
attributes for each transaction as the values in the matrix.

Definitions and Notations

A partition (scheme) is a division of attributes of a relation
into vertical fragments in which for any two fragments, the set
of attributes of one is non-overlapping with the set of attributes
of another. For example, the partition {(1, 3)(2, 4)(5)} defines a
collection of fragments in which attributes 1 and 3 are in one
fragment, 2 and 4 are in another and 5 is in a separate
fragment. The following are used in the derivation of the
Partition Evaluator.

208

n : Total number of attributes in a relation that is being

partitioned.

T Total number of transactions that are under
consideration.

q :Frequency of transaction tfort=1,2,...,T.

M
n;

: Total number of fragments of a partition
: Number of attributes in fragment i

niLtZ Total number of attributes that are in fragment k
accessed remotely with respect to fragment i by transaction .

i
ftj : Frequency of transaction t accessing attribute j in

fragment i. Note that ftjl is either 0 or qt.
Aj : Attribute Vector for attribute j in fragment i. t-th

1
component of this vector is ftj .

R : Set of relevant attributes in fragment k accessed
remotely with respect to fragment i by transaction f; these are
attributes not in fragment i but needed by t.

| Rix] : Number of relevant attributes in fragment k
accessed remotely with respect to fragment / by transaction t.

Irrelevant local attribute access cost

For the first component we use square-error criterion as it
was presented in [JD88]

The general objective is to obtain that partition which, for a
fixed number of clusters, minimizes the square-error.
The square-error for the entire partition scheme containing M
fragments is given by

M
Ep = Z;euz 2
i=

Relevant Remote Attribute Access Cost

Now we will include the second component which would
compute a penalty factor that computes the function. Given a
set of partitions, for each transaction running on a partition
compute the ratio of the number of remote attributes to be
accessed to the total number of attributes in each of the
remote partitions. This is summed over all the partitions and
over all transactions giving the following equation. The second
term is given by:

T R:
% - muz{qi : |Ritk|'n:—tﬂ

t=1 k=i itk

(3)

Here A” is an operator that is either an average, minimum
or maximum over all i. These different choices of the operator
give rise to average, optimistic and pessimistic estimates of the
remote access cost. If specific information is available
regarding transaction execution strategies, then we can
determine for each transaction f, the remote fragments
accessed by the transaction and the remote access cost can
be refined accordingly. In our experimental investigation, we
use the optimistic estimate for illustration.

Partition Evaluator (PE) function is given by:
_E2 2
PE = Ey + ER

Analysis of the Partition Evaluator

The final form of Partition Evaluator is given in equation 4. For
analize and testing evaluator behavior, we implement an C++
program who produce all possible combinations of attribute
with an number of fragments. We testing this program in
several cases - an 5 attributes and 5 transactions, (1 to 10
fragments for case 1, 1 to 5 fragments for case 2), partition
evaluator was computed, and for minimum values, partitions
scheme was stored and write.

Program we used is composed from 2 algorithms, one
(called PE algorithm) for computed value on a given partition
scheme and an number of fragments, and the other algorithm
(called GEN_EP algorithm) computed the minimal value of the
PE from all partition schemes generated in a backiracking
mode.

We present below values for each number of fragments and
values for E;\ZA , Eé and EP.

For the test we used a matrice of attributes use with five
attributes accesed by five transactions.
We present below values for each number of fragments

. . Rk 2 2
together with the accordingly value opting for Ew , Ezr and
EP .

We can notice that for a number of two fragments - the
fragment | (1,4,5) and the fragment Il (2,3) we obtain the

lowest value for EP .

We presented a general approach of the vertical
fragmentation issue of the dates from a distributed database.
Using an objective function used on the group models we
obtained the implementation of an evaluator of partitions that
can be use in the verification of some scheme of the dates
fragmentation. We believe that now it's easier to project the
euristic algorithm or other nature for the partition of databases.
On the same principle it can be implementated a variant of this
evaluator for the database oriented-object.

Transactions \ Attributes Al A2 A3 A4 A5
Tl 0 30 0 30 30
T2 15 15 15 0 15
T3 40 0 0 40 40
T4 0O 10 10 O 0
TS5 15 15 15 0 0
2 2
Number of Partition scheme Ey Ex EP
fragments values values values
1 (1,2,3,4,5) 3477 0 3477
2 (1,4,5) (2,3) 1369 770 2139
3 (1,4,5 (2) (3) 791 1470 2261
4 (1) (2) (3) (4,5) 144 3192 3336
5 (1) (2) 3) (4) (5) 0 5836 5836

References

[CPW89] S. Ceri, S. Pernici, and G. Weiderhold. Optimization
Problems and Solution Methods in the Design of Data
distribution. Information Sciences Vol U, No. 3, p 261-272,
1989.

[HS75] J. Hoffer, and D. Severance. The Uses of Cluster
Analysis in Physical Database Design In Proc. 1st
International Conference on VLDB, Framingham, MA,
1975, pp. 69 - 86.

[NCWD84] S. Navathe, S. Ceri, G. Wiederhold, and J. Dou.
Vertical Partitioning Algo-for Database Design ACM
Transactions on Database Systems, Vol. 9, Dec. 1984.

[NR89] S. Navathe, and M. Ra. Vertical Partitioning for
Database Design: A Graphical Algorithm. ACM SIGMOD,
Portland, June 1989.

Recommended for publication by the Editorial board

209

[LOZ93] X. Lin, M. Orlowska, and Y. Zhang. A graph based
cluster approach for vertical partitioning in database
design. Data an Knowlegde Engineering, 11:151-169,
1993.

[CMVN94] S. Chakravarthy, R. Muthuraj, R. Varadarajan, and
S. Navathe. An objective function for vertically partitioning
relations in distributed databases and its analysis. In
Distributed and parallel databases, pages 183-207. Kluwer
Academic Publishers, 1994,

[JD88] A. Jain, and R. Dubes. Algorithms for clustering Data.
Prentice Hall Advanced Reference Series, Englewood
Cliffs, NJ, 1988.

[OV99] N. Tamer, P. Valduriez. Principles of Distributed
Database Systems. Prentice Hall Englewood Cliffs, second
edition, New Jersey 07362.

	38_RUNCEANU_2

