АНАЛИЗ НА ТЕХНИЧЕСКОТО СЪСТОЯНИЕ И ЕКСПЛОАТАЦИОННИТЕ РЕЖИМИ НА БАГЕР ERS-710 БАЗИРАН НА КОЛЕБАНИЯТА В МЕТАЛНАТА МУ КОНСТРУКЦИЯ

Здравко Илиев 1, Диана Дечева 2, Николай Иванов 3, Тихомир Тодоров 4

¹ Минно-геоложки университет "Св. Иван Рилски", 1700 София, E-mail iliev@mgu.bg

² Минно-геоложки университет "Св. Иван Рилски", 1700 София, E-mail diana_detcheva@abv.bg

³ Минно-геоложки университет "Св. Иван Рилски", 1700 София, E-mail ivanov_mgu@abv.bg

⁴ Минно-геоложки университет "Св. Иван Рилски", 1700 София, E-mail tiho_2003@abv.bg

РЕЗЮМЕ: Изследвани са възможностите за оценка на условията в които работи багер ERs-710 чрез използване на статистически и честотен анализ на колебанията, възникващи в металната му конструкция.

ANALYSIS OF THE TECHNICAL AND OPERATING CONDITIONS OF EXCAVATOR ERS-710 BASED ON FLUCTUATIONS OF HIS METAL CONSTRUCTION

Zdravko Iliev 1, Diana Decheva², Nikolai Ivanov 3, Tihomir Todorov 4

¹ University of Mining and Geology "St. Ivan Rilski", E-mail iliev@mgu.bg

² University of Mining and Geology "St. Ivan Rilski", E-mail diana_detcheva@abv.bg

³ University of Mining and Geology "St. Ivan Rilski", E-mail ivanov mqu@abv.bg

⁴ University of Mining and Geology "St. Ivan Rilski", E-mail tiho_2003@abv.bg

ABSTRACT: An estimate was made based on using statistical and frequency analysis of the fluctuations occurring in the metal structure of the excavator ERs-710 for assessment of his technical and operating conditions.

Увод

Работата на добивните минни машини е съпроводена с вибрации на механичната им конструкция. При повишено натоварване или при поява на проблеми от механичен характер се появяват хармонични съставни, които могат да бъдат:

 с продължителна проява в честотна област и/или с амплитуда, нетипични за колебанията, регистрирани при нормална работа на машината;

- асинхронни във времето колебателни преходни процеси, предизвикани най-често от кратковременно ударно натоварване на механичната конструкция.

Установяването, оценката и анализа на тези хармонични сигнали с различна продължителност и честотни характеристики е важна предпоставка за своевременно откриване на недопустими режими на работа, предаварийни и аварийни ситуации.

Цел и обхват на експерименталните изследвания

Експерименталните изследвания бяха проведени на верижен многокофов багер ERs-710, работещ в добивен въглищен участък в Мини "Марица-изток". Чрез специализиран прибор за трикоординатни акселерометрични измервания (Илиев 3., Д. Дечева, Булкамк'11) бяха извършени записи на ускоренията, възникващи в три точки от металната конструкция на багера:

1. Мачта на багера - върхът на централната колона около която се въртят разтоварна стрела и горния строеж на багера.

2. А-фермата, на която са захванати полиспастите на звената за подема на кофовата верига.

3. Централната колона, в близост до 3-те опорни лагера на въртенето на горна багерна част, разтоварната стрела и рицел-валовете на редукторите за въртене на горна багерна част.

Целта на проведените изследвания беше да се установи:

1. Диапазонът на възникващите ускорения при нормална работа на багера.

2. Честотата и интензитета на ускоренията, съществено различаващи се от тези при нормална работа.

3. Дали съществуват "типични" хармоници, характеризиращи колебанията, които възникват при нормалната работа на багера и по възможност да се определят техните честоти и амплитуди.

4. Доколко честотният анализ на колебанията в металната конструкция на багера може да се използва като информационен базис в системите за диагностика.

Резултати от проведените експериментални изследвания

На база на експерименталните данни са определени функциите на разпределение на ускоренията, възникващи по трите оси. На фиг. 1, 2, 3 и 4 са представени хистограмите за измервателна точка 2 при покой на багера и работа в различни режими.

С "o" е означена графиката, съответстваща на измерените ускорения по ос X, с "+" – по ос Y, а с "*" – по ос Z. От получените резултати може да се направи извода, че ускоренията при работа и в покой могат да се отнесат към стохастичните процеси с нормално разпределение.

В таблица 1 са представени резултатите от статистическа обработка на данните за всички измервателни точки и определените допустими интервали на изменение на ускоренията при нормална работа на багера. Графично тези интервали са представени на фиг. 5.

З

2

1

Ο

-1

-2

-3

Фиг.1. Багерът е в покой.

Фиг. 5. Допустими интервали на изменение на ускоренията

На нея с най-тъмен цвят е показана стойността на математическото очакване - μ . Величината, изобразена посредством стълбчета с номера от 1 до 9 е представена на в таблица 2

Точка	Функция	При покой			При копаене в дясно			При копаене в ляво		
		Х	Y	Z	Х	Y	Z	Х	Y	Z
1	μ	0.0777	-0.0614	-0.057	-0.2127	-0.0801	-0.0602	0.3543	0.0149	-0.091
	σ	0.4831	0.1646	0.1720	0.5040	0.1667	0.1694	0.4711	0.1615	0.1606
	3.σ	1.4493	0.4938	0.5161	1.5122	0.5002	0.5082	1.4130	0.4846	0.4818
	μ +3. σ	1.5270	0.4324	0.4591	1.2995	0.4201	0.4480	1.7678	0.4995	0.3908
	$\mu - 3.\sigma$	-1.3716	-0.5552	-0.5731	-1.7249	-0.5803	-0.5684	-1.0592	-0.4697	-0.5728
	μ	-0.0763	-0.0032	-0.019	0.0009	0.0264	-0.2185	-0.0302	0.0404	0.4238
	σ	0.5964	0.3342	0.7451	0.5372	0.2998	0.7352	0.5829	0.3220	0.7487
2	3.σ	1.7894	1.0026	2.2353	1.6116	0.8995	2.2057	1.7487	0.9660	2.2461
	μ +3. σ	1.7131	0.9994	2.2163	1.6125	0.9259	1.9872	1.7185	1.0064	2.6699
	$\mu - 3.\sigma$	-1.7894	-1.0026	-2.235	-1.6116	-0.8995	-2.2057	-1.7487	-0.9660	-2.2462
3	μ	-0.0562	0.0538	0.0018	-0.05	-0.2483	0.1104	-0.0931	-0.1175	-0.0323
	σ	0.1503	0.1407	0.12	0.13	0.1989	0.1682	0.14	0.1805	0.1634
	3.σ	0.4509	0.4221	0.36	0.39	0.5969	0.5046	0.42	0.5416	0.4902
	μ +3. σ	0.3947	0.4759	0.3618	0.34	0.3486	0.6150	0.3269	0.4241	0.4579
	$\mu - 3.\sigma$	-0.5071	-0.3683	-0.3582	-0.44	-0.8452	-0.3942	-0.5131	-0.6591	-0.5225

Таблица 1.

Таблица 2.

Стълбче №	Режим	Ускорения, измерени по ос		
1	покой	Х		
2	покой	Y		
3	покой	Z		
4	багерът копае надясно	Х		
5	багерът копае надясно	Y		
6	багерът копае надясно	Z		
7	багерът копае наляво	Х		
8	багерът копае наляво	Y		
9	багерът копае наляво	Z		

Анализът на получените резултати показва, че изменението на ускорението във всички режими на работа при липса на на ударни натоварвания варират в интервала

 \pm 1,7 m/s^2 за измервателна точка 1, \pm 2,5 m/s^2 за измервателна точка 2 и \pm 0,8 m/s^2 за измервателна точка 3.

Използвайки тези данни, лесно могат да се определят ситуациите и моментите от време в които се появяват ударни натотоварвания на металната конструкция, характеризиращи се с поява на ускорения извън определения диапазон.

На фигури 6, 7 и 8 за измервателна точка 2 са представени регистрираните ударни натоварвания, които са регистрирани в рамките на 12s по оси съответно X, Y и Z при копаене на багера наляво.

Фиг.8. Ударни натоварвания по ос Z

Докато ударните ускорения, регистрирани по оси X и Z имат случаен характер, и може да се предположи, че те се дължат на условията на работа на багера, то по ос Y определено пиковите натоварвания са периодични, което може да се дължи както на спецификата на работа на багера, така и на наличие на механичен проблем. Сравняването на трите графики дава информация и за наличието на колебания едновременно и по трите оси. Приблизително в 5,2 и 7,2 секунда от записа, ускоренията и по трите оси са надвишили стойностите с които се характеризира нормалната работа на багера.

Извършен е честотен анализ на получените данни от измерванията. Целта е намиране честотите и амплитудите на "типичните" хармонични изменения на ускоренията при покой и работата на верижния багер. Обработката на данните е извършена с програма за спектрален анализ, позволяваща минимизиране на ефекта "изтичане на честоти" [Vidolov, Y., "Hybrid frequency estimation method"]. Използването и позволява по-точно определяне на доминиращите честоти, в сравнение със стандартните програмни продукти, особено в условията на зашуменост на сигнала, какъвто е конкретния случай.

Резултатите от работата на програмата са представени в таблица 3. В нея доминиращите честоти и тяхните амплитуди са представени в низходящ ред на амплитудата.

Анализът на получените резултати позволява да се направи заключението, че амплитудите на хармоничните съставни в измерваните сигнали са сравнително малки и много рядко надвишават 0,2 m/s^2 . При амплитуди на типично срещаните ускорения в металната конструкция на багера в трите измервателни точки от порядъка на ±1,7, ±2,5 и ±0,8 m/s^2 става ясно, че хармоничните трептения не отразяват съществено процесите, протичащи при копаене.

Разпределението на честотите с най-голяма амплитуда за измервателна точка 2 е показано на фигури 9, 10 и 11.

Фиг. 9. Доминиращи честоти по ос Х за всички режими.

Фиг. 10. Доминиращи честоти по ос Y за всички режими.

Фиг. 11. Доминиращи честоти по ос Z за всички режими.

Таблица 3	3
-----------	---

Точка	Състояние на багера	Oc	Амплитуда <i>m / s</i> ²	Честота Hz	Амплитуда <i>m / s</i> ²	Честота Hz	Амплитуда <i>m / s</i> ²	Честота Hz
1	покой	Х	0.0410	0.88	0.0290	5.94	0.0230	2.82
		Y	0.0410	0.91	0.0240	5.02	0.0230	8.67
		Z	0.0185	7.80	0.0175	23.77	0.0170	20.47
	копае на ляво	Х	0.3300	19.79	0.0220	24.47	0.0900	28.62
		Y	0.0680	20.33	0.0450	4.42	0.0280	34.83
		Z	0.0750	4.52	0.0610	1.89	0.0590	19.80
	копае	Х	0.3400	19.72	0.2000	28.32	0.1100	26.35
		Y	0.0860	20.44	0.0380	4.25	0.0320	40.28
	па дясно	Z	0.0840	1.56	0.0680	19.74	0.0470	4.55
	покой	Х	0.0250	0.35	0.0230	11.77	0.0190	3.84
		Y	0.0310	0.72	0.0220	2.74	0.0180	11.54
		Z	0.0152	1.40	0.0139	12.33	0.0137	3.94
	копае на ляво	Х	0.1150	36.99	0.0700	26.13	0.0630	15.22
2		Y	0.1100	3.53	0.0890	36.63	0.0800	9.20
		Z	0.1700	36.77	0.1230	39.20	0.0750	1.64
	копае	Х	0.0820	37.00	0.0770	28.25	0.0750	45.92
		Y	0.1150	4.12	0.0900	36.58	0.0630	8.48
	па дясно	Z	0.1400	0.14	0.1300	36.70	0.0900	39.03
	покой	Х	0.0340	37.37	0.0290	0.43	0.0280	32.22
3		Y	0.0310	37.35	0.0280	30.77	0.0250	32.83
		Z	0.0260	25.45	0.0230	30.69	0.0225	37.58
	копае на ляво	Х	0.1100	2.26	0.0220	5.62	0.0210	4.25
		Y	0.1000	30.03	0.0600	20.23	0.0400	2.40
		Z	0.1100	2.25	0.0800	30.04	0.0300	40.74
	копае на дясно	Х	0.0480	40.29	0.0380	2.05	0.0330	4.28
		Y	0.0820	20.57	0.0780	19.48	0.0690	14.73
		Ζ	0.0760	30.44	0.0520	19.60	0.0400	40.33

Както се вижда от графиките за всяка от осите съществуват две обособено области, които условно могат да се разделят на ниско и високочестотна. Докато за оси Х и Z те приблизително се припокриват, то за ос Y

Фиг.12. Измервателна точка 1

За останалите измервателни точки съществува аналогична зависимост. Колебанията по оси X и Z имат приблизително еднакво разпределение, а при координата Y се срещат и честоти, които са извън диапазона на другите координати (фигури 12 и 13, като последователно отгоре – надолу са представени графиките съответстващи на измервания по оси X, Y и Z).

Изводи

Проведените експериментални изследвания и получените резултати позволяват да се твърди, че ускоренията в металната конструкция на багера са параметър, който успешно може да бъде използван при оценка на условията на работа на багера е диагностика на техническото му състояние. Чрез тях лесно могат да се установят както възникването на периодични и непериодични ударни натоварвания, така и появата на колебания, които не са характерни за нито един от нормалните режими на работа.

Препоръчана за публикуване от катедра "Автоматизация на минното производство ", МЕМФ

нискочестотната е значително по-голяма. Това найвероятно се дължи на естеството на работа на багера при движението му встрани в режим на копаене на въглища.

Интересен момент представлява възможността за обработка на данните в реално време при която хармоничните колебания могат да бъдат извадени от общия сигнал и резултата да бъде анализиран за поява на периодични удари, който са ясен белег за възникнал механичен проблем.

Литература

- Vidolov, Y., "Hybrid frequency estimation method", Information Technologies And Control Journal, Issue.4, 2011, ISSN 1312-2622.
- Илиев З.,Д. Дечева, Н. Иванов, Т. Тодоров, "Изследване на колебанията в металната конструкция при работа на багер ERS-710, Национална научно-техническа конференция с международно участие "Автоматизация в минната индустрия и металургията" БУЛКАМК'11,София, 2011