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ABSTRACT: Recent advances in hyperspectral remote sensing make it possible to develope new ways for monitoring of plant ecosystems and environment changes 
as well as for detection of plant diseases under field conditions. Hyperspectral (narrow-band) vegetation indices (Vis) have been shown to provide additional 
information being decisive in characterizing the physiological state, biochemical composition, physical structure,, and water content of the plants. The present study 
aims to determine narrow spectral bands that are best suited for characterizing the influence of a viral infection (at an early stage) on young apple trees, cultivar 
Florina, infected with Apple Stem Grooving Virus (ASGV). An empirical-statistical approach was developed and applied on hyperspectral reflectance data collected by 
means of a portable fiber-optics spectrometer USB2000 in the visible and near infrared spectral ranges (450-1000 nm) with a spectral resolution of 1.5 nm. Several 
narrow-band VIs - normalized difference vegetation index (NDVI), modified NDVI (mNDVI), simple ratio (SR), photochemical reflectance index (PRI), 
chlorophyll/pigment related indices (ChI red edge, ChI green), pigment index (PI), chlorophyll absorption ratio index (CARI), modified CARI (MCARI), and disease index fd 

were selected and calculated for estimation of the applicability of the indices to detect changes that occured in the physiological state of the trees infected with ASGV. 
Statistical analyses (Students’ t-test and F-test) were applied to assess the sensitivity of the VIs. Indices CARI, Chl red edge, and PRI gave the best results. 
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Introduction 
 
   Precise estimates of the plant diseases and their effect on 
the quality and quantity of crop production are important for 
horticulture, precision agriculture, as well as for basic and 
applied plant researches. Reliable and timely assessments of 
plant disease occurrence and spread are the basis for planning 
plant protection activities in field or greenhouse production. 
 

   Remote sensing data and techniques have already proven to 
be relevant to many requirements of agricultural applications. 
Different studies and experiments demonstrated their 
usefulness and feasibility to address various agricultural 

issues, such as crop classification and mapping, predicting 
crop yield, soil survey, irrigation planning, and damage 
assessment by disaster, pest or diseases (Wang et al., 2010; 
Usha and Bhupinder, 2013; Krezhova et al., 2017). Remote 
sensing methods are widely used in managing abiotic stresses, 
such as nitrogen and water deficiency, salinity and herbicide 
stress, in order to improve crop yield. When it comes to biotic 
stress, remote sensing is only able to assess the damage from 
diseases; and yet, it is not useful for preventing the losses. 
Therefore, further research is needed to investigate the early 
detection of biotic stress in plants before the occurrence of 
visible symptoms. 
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   Recent hyperspectral remote sensing (HRS) techniques 
based on leaf reflectance measurements are successfully used 
to derive meaningful biophysical variables related to plant 
physiological state, like the concentration of foliar pigments 
(Panigada et al., 2010), nitrogen concentration (Fava et al., 
2009), water content (Colombo et al., 2008), leaf structure 
(Monteiro et al., 2012), etc.  
 

   Spectral reflectance of plants in the visible (VIS) and near 
infrared (NIR) regions of the electromagnetic spectrum is 
primarily affected by plant pigments, mainly chlorophylls (Chls) 
and carotenoids, and cellular structure of the leaves. Chls 
absorb light energy and transfer it into the photosynthetic 
apparatus. Carotenoids (yellow pigments) can also contribute 
energy to the photosynthetic system. Chls tend to decline more 
rapidly than carotenoids when plants are under stress or during 
leaf senescence (Gitelson and Merzlyak, 1996). From the 
optical point of view, these pigments have different spectral 
behaviour, with specific absorption features at different 
wavelengths, which allows remote sensing techniques to 
discriminate their respective effects on vegetation reflectance 
spectra.Thus, the variations in leaf pigment content provide 
useful information concerning the state of the plants. 
 

   The increasing importance of hyperspectral reflectance data 
motivated researches for defining optimal wavebands to 
estimate changes in plant physiological state (Stellacci et al., 
2016). The complexity of a rich hyperspectral dataset requires 
techniques for reduction of such large volumes of data, 
characterized by redundancy of information due to the high 
degree of correlation of neighbouring wavebands (Thenkabail 
et al., 2012; Rinaldi et al., 2014). Finding efficient solutions is 
essential for exploiting the full potential of hyperspectral data. 
Most of the approaches proposed are based on optical 
vegetation indices (VIs) that summarize the information 
contained in the reflectance spectrum through mathematical 
combinations of reflectance at different wavelengths. Large 
number of narrowband VIs, derived from hyperspectral 
measurements, was developed allowing several combinations 
for each biophysical variable (Wang et al., 2012). The use of 
VIs may improve the sensitivity to vegetation parameters 
investigated minimizing the influence of extraneous factors. 
 

   In recent years, researchers have studied various spectral 
vegetation indices to detect different vegetation diseases 
(Delalieux et al., 2009; Ranjan et al., 2012; Velichkova et al., 
2016). Efficient use of spectral data in detecting plant disease 
depends on the application. The spectral regions from 400 to 
700 nm and 700 to 1100 nm are mainly influenced by leaf 
composition of pigments, structure, and water content (Mahlein 
et al., 2013). The effects of a disease on the pigments and 
structure of a plant and the change in their spectral responses 
enable spectroradiometry and remote sensing techniques to 
detect plant disease effectively (Oerke et al., 2016).  
 

   The aim of this study is to detect a biotic stress (latent viral 
infection) on young apple trees caused by apple stem grooving 
virus (ASGV) in an early stage without visual symptoms. An 
empirical-statistical approach was applied on hyperspectral 
leaf reflectance data on the basis of calculation of several 
narrowband vegetation indices and evaluation of their 
sensitivity to the changes in the physiological state of the 
infected trees. 

Materials and methods  
 
Plant material 
   Young (one-year-old) apple trees, cultivar Florina, grown in a 
small non-commercial orchard were used for investigations. 
The trees were without disease symptoms on the aerial parts 
and organs. In the summer, a few trees (about 25) were 
checked trough Double Antibody Sandwich Enzyme Linked 
Immunosorbent Assay (DAS-ELISA) for the presence of 
viruses. Some of them were infected with ASGV. For data 
analysis we chose five trees – four infected to different degrees 
with ASGV and one non-infected that was adopted as control 
tree. 
 
Spectral measurements 
   Leaf reflectance spectra of the five apple trees were 
collected using a portable fiber-optic spectrometer USB2000 
(Ocean Optics, 2017) in the spectral range 450-1000 nm at a 
spectral resolution of 1.5 nm (bandwidth at half maximum). The 
measurements were carried out on an experimental setup in a 
laboratory. The light signal from the freshly detached leaves is 
guided to the entrance lens of the spectrometer by a-meter-
long fiber-optic cable directed perpendicular to the measured 
surface. As a source of light, a halogen lamp providing 
homogeneous illumination of measured leaf areas was used. 
Leaf reflectance measurements were made at about 10 cm 
above the illuminated sides of 25 to 30 leaves on the healthy 
and infected leaves from each tree. At the beginning of each 
measurement, the emitted spectrum of the light source was 
registered from a diffuse reflectance standard. Spectral 
analyses were carried out in spectral range 450-850 nm at 
1130 narrow spectral bands (0.3 nm). The spectral reflectance 
characteristics (SRC) of the investigated leaves were 
determined as the ratio between the reflected from leaves 
radiation and this one reflected from the standard. 
 
Narrowband vegetation indices used in this study 
   VIs were commonly calculated from combinations of 
reflectance at two or three spectral bands (most common in 
red and NIR spectral ranges) in order to obtain a single value 
(index) that is related to the vegetation growth.  

 
   For assesment of the changes in the physiological state of 
the apple trees infected with ASVG, we selected ten 
narrowband VIs, given in Table 1. VIs included were applied at 
the leaf level and were expected to be related to 
photosynthetic activity, biomass, Chl content and plant stress. 
 
   Normalized Difference Vegetation Index (NDVI) was first 
proposed by Rouse et al. (1974) and is one of the most known 
and widely used VIs. It is based on the contrast between 
reflectance in the red region due to maximum absorption of 
foliar pigments (Chls and carotenoids) and reflectance in NIR 
where the maximum of the reflection caused by leaf cellular 
structure and biomass has appeared (Davenport and 
Nicholson, 1993). NDVI is affected by plant photosynthetic 
activity, total plant cover, plant and soil moisture and is 
commonly used for estimation of plant ‘’greenness’’. In most of 
the researches NDVI shows non-linear relationship with 
biophysical parameters such as green leaf area index (LAI) 
and biomass (Baret and Guyot, 1991). 
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Table 1 
Calculated narrowband vegetation indices for detection of ASGV virus infection on apples trees 

Index Equation Full name Reference 

NDVI (RNIR– Rred)/(RNIR+Rred), 
NIR=845 nm, red=665 nm  Normalized Difference Vegetation Index Rouse et al. (1974) 

mNDVI (R750– R705)/(R750+ R705) Modified Normalized Difference 
Vegetation Index Jurgens (2010) 

SR RNIR /Rred 
NIR = 760 nm, red=695 nm Simple Ratio Tucker (1979) 

CARI (R700 – R670)-0.2(R700 – R550) Chlorophyll Absorption Ratio Index Kim (1994) 

MCARI [(R700 – R670)-0.2(R700 – R550)](R700/R670) Modified Chlorophyll Absorption Ratio 
Index Daughtry (2000) 

Clred edge (RNIR /Rred edge) – 1 
red edge=714 nm, NIR=760 nm Chlorophyll Index at green range  Gitelson et al. (2005)  

Clgreen (RNIR /Rgreen) – 1  
green=550 nm, NIR=760 nm Chlorophyll Index at red edge Gitelson et al. (2005) 

PI RNIR /Rred 
NIR=677 nm and red=554 nm Pigment index Tilley et al. (2003) 

PRI (R531– R570)/(R531 + R570) Photochemical Reflectance Index Gamon et al. (1992) 
fD R500 / (R500+ R570) Index of disease  

 
   Modified NDVI (mNDVI) with wavelength of 705 nm was an 
improved version of NDVI (Sims and Gamon, 2002). It was 
developed to eliminate the effects of surface reflectance by 
incorporating the blue band. This VI is more strongly correlated 
with total Chl content and eliminates the effect of surface 
reflectance. Li et al. (2015) found that mNDVI is very sensitive 
to minor changes in the vegetation canopy, gap fraction, and 
senescence, and has been used for precision agriculture, 
forest monitoring,, and vegetation stress detection. The value 
of this index is between -1 and 1, as the values in range 0.2 to 
0.7 are an indicator for green vegetation (Snirer, 2013). 

 
   The simple ratio index (SR) (Jordan, 1969) is probably the 
first index and is the most commonly used to derive LAI for a 
forest canopy. When it is calculated at wavelengths 760 and 
695 nm (SR in this case was called also Carter index), it is 
specialized narrow band index for the monitoring of stress 
(Tucker, 1979). Its value is in the interval 0 – 30 (Snirer, 2013). 

 
   Chlorophyll Absorption Ratio Index (CARI) was first 
developed by Kim et al. (1994) and measures the magnitude 
(depth) of Chl absorption at the red region (670 nm) where the 
maximum of Chl absorption is, to the green (550 nm) and red- 
edge (700 nm) regions of the spectrum, where absorption of 
the photosynthetic pigments is minimum. By CARI, a reduction 
of the variability of the photosynthetically active radiation due 
to the presence of diverse non-photosynthetic materials could 
be achieved (Wu et al., 2009). 

 
   Modified Chlorophyll Absorption Ratio Index (MCARI) was 
proposed by Daughtry et al. (2000).It was designed to measure 
photosynthetically active radiation related to Chl absorption in 
red and red-edge regions. Thus, it is mostly affected by Chl 
variability, showing high sensitivity even at high chlorophyll 
levels (Haboudane et al., 2004). Authors found that MCARI 
has a great potential for LAI predictions, because 60% of 
MCARI variation is due to the LAI, although they did not 
consider NIR band in its formula. 

 

   Photochemical Reflectance Index (PRI) was developed by 
Gamon et al. (1992) to estimate rapid changes in the relative 
levels of carotenoid pigments (particularly xanthophylls). 
Carotenoid pigments indicate if photosynthetic light was used 
efficiently. Thus PRI determines directly light use efficiency by 
remote sensing (Raddi et al., 2005). PRI is used in studying 
vegetation productivity and stress. Its value ranges from -1 to 
1. The common range for green vegetation is from - 0.2 to 0.2 
(Snirer, 2013). 

 
   Chl Index at green range (Chlgreen) and Chl Index at red edge 
(Chlred edge) belong to three-band model for non-invasive 
estimation of Chl and carotenoid contents. Both were proposed 
and studied by Gitelson et al. (2003, 2005). Because of the 
strong linear correlation with Chl content, the ChIgreen could be 
applied for estimation of canopy Chlcontent at any leafscale, 
under a wide range of canopy conditions and seasonal 
changes and variation in photosynthesis patterns 
(Thanyapraneedkul et al., 2012). ChIred edge did not depend on 
the crop type and exhibited low sensitivity to soil background 
effects. It was a suitable surrogate of Green LAI as it 
objectively responded to changes in both leaf area and foliar 
chlorophyll content (Wu et al., 2009). 
 
   The leaf pigment vegetation indices (PIs) were designed to 
provide a measure of stress-related pigments present in 
vegetation, such as carotenoids and anthocyanins, which tend 
to be present in higher concentrations when vegetation is in a 
weakened state. PIs do not quantity Chl, which is measured 
using the greenness indices. Applications of PIs include crop 
monitoring, ecosystem studies, analyses of canopy stress, and 
precision agriculture (Sims and Gamon, 2002). 

 
   Disease indices fD are specific for singular study. As fD 
increased, the reflectance decreased significantly in NIR 
regions. 

 
Data analyses 
   For the assessment of the sensitivity of considered 10 VIs 
(Table 1) to changes in the physiological state of apple trees 
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infected with ASGV, statistical analyses (extended Student t-
test and Fisher-test) were performed by applying a two-step 
procedure. To produce reliable conclusions, these tests require 
normally distributed data; therefore, the VIs datasets were 
preliminary tested for normality with the Shapiro-Wilk test at a 
significant level of 0.05.  
 
   As a first step, the Student two-sample t-test was carried out 
to determine the statistical significance of the differences 
between the values of the calculated 10 VIs for infected trees 
against the control ones. The differences are affirmed as 
statistically significant at level p < 0.05. 
 
   Then, we applied the Fisher‘s Least Significant Difference 
(LSD) test. Accordingly, the difference between two mean 
values is declared statistically significant at a given level of 
significance if found to exceed the value of LSD. In our case 
the value LSD0.05 is calculated from the expression 

dsSD .05,005.0 tL , 

where: t0,05 is tabulated t-value at the level of significance 0,05 
with degrees of freedom n1+n2-2, (n1 and n2 are the numbers of 
the control sample and the infected sample, respectively), and 
sd is the pool standard deviation of the difference between the 
means. 
 
 
Results and discussion 
 
   The averaged (over 30 measured areas) SRCs of the control 
apple trees and four trees infected by ASRG are shown in 
Figure 1. SRCs of the infected trees differ against the control 
trees in several spectral ranges: green (520–580 nm, 
maximum re ectivity of green vegetation), red (640–680 nm, 
maximum chlorophyll absorption), red edge (680–720 nm,  

 
Fig. 1. Averaged SRC of leaves of five studied apple trees 
 
 

maximum slope of the re ectance spectra), and NIR (720–770 
nm, plateau of the characteristics). In all spectral ranges, the 
SRCs values are higher than the control. The differences at 
green and NIR regions are most significant. 
 
   We checked the VIs datasets for normality by means of 
Shapiro-Wilk test investigating the values of skewness and 
kurtosis. The standard error (SE) and the value of the ratios 
skewness/SEskew and kurtosis/SEkurt were calculated and they 
are within the interval (-1.96; +1.96), so that data are normally 
distributed. In Figure 2, we exemplify results from the Shapiro-
Wilk test at a significance level 0.05 applied to the pigment 
index (PI) dataset for apple tree 4.  
 

 
Fig. 2. The distribution of pigment VI dataset for tree 4 infected by ASGV  
 
   Figure 3 shows box plots summarizing the results of 
assessment of the normality of PI datasets derived from 
hyperspectral reflectance data of control and four infected 
trees. The results show that VIs datasets satisfy the normal 
distribution reasonably well. 
 

Fig. 3. Box plots ofPI datasets of all investigated trees: median (line 
across box), mean value (small empty square box), minimum and 
maximum values (lower and upper ends of the whisker, respectively), 
interquartile range containing 50% of values (box) 
 
   Student t-test was performed at a level of statistical 
significance p<0.05 for assessment of the significance of the 
differences between mean of sets of the calculated VI values 
of control and infected trees. Mean values, p-values, F-values, 
and LSD for the sets of hyperspectral VIs used in the study are 
shown in Table 2. F-values are calculated as a ratio of 
variances (squares of standard deviations) of two compared 
groups (healthy and infected).  
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Table 2.  
Mean values, p-values, F-values, and LSD for the sets of hyperspectral VIs used in the study 

tree 1 2 3 4  1 2 3 4  1 2 3 4 
NDVI mNDVI  SR 

Mean healthy 0.870 0,870 0.870 0.870 0.644 0.644 0.644 0.644 10.325 10.325 10.325 10.325 
Mean infected 0.842 0,871 0.869 0.863 0.609 0,625 0.643 0.636 8.588 10,328 10.336 11.256 

F-ratio 1.747 2,390 1.486 2.969 2.177 9,081 1.676 2.601 1.625 5,700 1.064 5.730 
p ns * ns ns ns *** ns ns ns *** ns *** 

LSD 0.006 0,005 0.004 0.006 0.011 0,016 0.009 0.010 0.315 0,484 0.290 0.516 
difference 0.028 0,001 0.001 0.013 0.034 0,019 0.001 0.012 1.738 0,003 0.011 0.931 

CARI MCARI ChI green 
Mean healthy 5.176 5,176 5.176 5.176 18.910 18.910 18.910 18.910 5.176 5.176 5.176 5.176 
Mean infected 5.753 5,980 5.712 5.921 19.616 23,401 20.739 22.824 4.509 5,080 5.298 5.613 

F-ratio 2.318 7,388 1.002 2.506 1.941 6,528 1.075 2.532 1.057 5,816 1.008 3.619 
p * *** ns * ns *** * * ns *** ns ** 

LSD 0.396 0,493 0.261 0.346 1.920 2,400 1.320 1.779 0.239 0,342 0.200 0.302 
difference 0.576 0,804 0.536 0.744 0.707 4,492 1.830 3.915 0.667 0,095 0.123 0.437 

ChI red edge PI PRI 
Mean healthy 1.482 1.482 1.482 1.482 0.411 0.411 0.411 0.411 0.027 0,027 0.027 0.027 
Mean infected 1.328 1,362 1.479 1.561 0.453 0,400 0.424 0.390 0.028 0,326 0.026 0.022 

F-ratio 2.128 8,074 1.792 2.692 1.684 1,823 2.544 1.093 9.090 2,679 2.427 13.772 
p ns *** ns * ns ns * ns *** * * *** 

LSD 0.074 0,098 0.058 0.068 0.025 0,020 0.015 0.019 0.005 0,009 0.002 0.005 
difference 0.154 0,120 0.003 0.080 0.042 0,011 0.013 0.021 0.001 0,005 0.001 0.005 

ns – no statistical significance; * - p<0.05; ** - p<0.01; *** - p<0.001 
 

   The results show that NDVI is insensitive to ASGV viral 
infection at an early stage. The mean NDVI values of control 
and infected trees are close (about 0.85). In healthy leaves, 
NDVI values are positive and have a maximum value of 1. The 
higher values are an indicator for more amount of biomass and 
more Chl content. In our case, mean NDVI values of infected 
trees weakly decr ase against the control and this VI can be 
used as a measure of the greenness and vigour of the 
vegetation. 
 
   Index mNDVI is also insensitive to the infection. Its values 
decrease when the vegetation is subject to a state of stress. 
The values in range from 0.2 to 0.7 are an indicator for green 
vegetation. In our case, the values are between 0.64 and 0.61 
(for infected trees) and the decrease is not significant. This is 
due to the fact that no visual symptoms occured in the infected 
leaves but still mNDVI indicates slight changes in its 
physiological state. 
 
   Pigment VI (PI) appears less sensitive since it indicates that 
no changes occured in the ratio Chl/carotenoids. This is the 
reason why VIs SR, Chlgreen and Chlred edge also do not show 
good results for detection of viral infection at an early 
stage.The changes in SRCs (Fig. 1) of infected trees in green 
spectral range around 550 nm (maximum of the re ectivity of 
green vegetation due to Chl content) are not statistically 
significant for trees 1, 3, and 4 (with lower ASGV content). The 
results of serological test DAS-ELISA applied on ifected trees 

for the presence of ASGV are displayed in Figure 4. Disease 
index fd calculated for reflectance in the choosen wavelengths 
proved to be not suitable for this investigation and the results 
are not shown in Table 2. 

 
 
Fig. 4. Results of DAS-ELISA test on leaf samples from infected with 
ASGV young apple trees 
 
   Indices PRI, CARI, and MCARI show the best results. PRI 
directly determined light use efficiency by remote sensing data 
- leaf reflectance at 531nm, where changes in xcantophyll 
cycle are manifested as narrow absorbtion feature and are an 
indicator for the changes in the physiological state of the 
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plants. CARI and MCARI were designed to measure the Chl 
influence in the green, red and red-edge regions. In our case, 
average SRCs of infected trees differ more significant against 
the control (Fig. 1) in these regions. The mean values of both 
VIs increase for all infected trees. 
 
   The normalised differences of mean values of 10 VIs 
calculated from spectral data of infected trees against the 
control tree are presented in Figure 5. It is seen that 
differences are highest for tree 2 and tree 4 in correspondence 
with the ASGV concentration. 
 

 
Fig. 5. Normalized differences of vegetation indices of the infected apple 
trees against the control tree 
 
 
Conclusions 
 
Ten hyperspectral vegetation indices were tested to explore 
their potential in assessment of influence of viral infection, 
caused by ASGV, at an early stage. In principle, all considered 
vegetation indices should be suitable to detect differences in 
the reflection between healthy and diseased plants. Different 
narrow band combinations were applied to derive from the 
indices better sensitivity to changes in physiological state 
(biophysical variables) such as Chl and pigment contents, cell 
structure, vegetation vigour, etc. Statistical methods were 
implemented to assess their sensitivity. Thus, for the  
investigation of the ASGV infection, two of the indices (NDVI 
and mNDVI) were found inapplicable. The sensitivity of other 
indices, such as SR, Chlgreen and Chlred edge, was not very high. 
PRI, CARI, and MCARI showed the best results as the 
differences of SRCs of infected trees in the selected 
wavebands were more significant. 
 
   This paper has shown that the selection of optimal narrow 
spectral bands that were better adjusted to study of a given 
application, allows to reduce the amount of hyperspectral data 
and computer time used for their proccesing, sometimes 
making the data interpretation easier. 
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