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DETERMINING THE NATURAL FREQUENCY ON A STEPPED SHAFT WITH A
TRANSITIONAL CURVED SECTION
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ABSTRACT. The article discusses the topic of determining the natural frequency in a specific shaft. The shaft consists of three segments. The second one is fulfilled
with a rounded radius. In the process of operation, the shaft acts by its natural vibrations. An approximate method is applied for their determination. According to the
method, each segment of the shaft is divided into portions along its length. The computational scheme is a free beam, propped up with two camps at its ends. It is
loaded with concentrated forces whose values are equal to the weights of the individual portions. Their application points are in the middle of the width of the portions
selected by the package engineer. The displacements in the points of this simple beam are calculated by the differential equation of the elastic line. The solution to
this equation is realised through its numerical integration. For the curved segment, an algorithm is applied to determine the radii, weights and stiffness. For the entire
shaft, the reaction forces and bending moments in the application points of the forces are obtained. The inclines of the elastic line and the displacements in these
points are calculated by numerical integration. The presented solution to determining the natural frequency of shaft with a transitional section confirms the validity of
the analytical expressions of the above values.
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PE3IOME. B cTatusta ce pasrnexaa BbNpochbT 3a onpefensHe Ha coBCTBEHUTE TPENTEHWUs B KOHKpeTeH Ban. Toi ce CbCTOW OT TPW y4acTbka, kaTo BTOPUAT €
M3MbIHEH CbC 3aKpbITIEHMe C onpefeneH pagwyc. B mpoueca Ha pabota Bbpxy Bana gencTBaT COOCTBEHW TpenTeHus. 3a TAXHOTO onmpefensiHe e MpuroxeH
npubnusuTeneH metoA. Cropep Hero BCeky y4acThbk OT Bana Ce pasfens Ha CerMeHTU Mo Ab/hxuHaTa My. Mauncnutennara cxema e rpeaa, noanpsHa ¢ Aga narepa
B KpauLata . TR € HaToBapeHa CbC CbCPEAOTOYEHW CUMK, YMNTO CTOMHOCTM Ca PaBHU Ha Ternata Ha cermeHTuTe. [MPUNOXHUTE UM TOYKM Ca B CPeauTe Ha
130paHNTe OT KOHCTPYKTOPA LUIMPUHA Ha cermeHTuTe. MpemecTBaHWATa B TOYKM OT MpocTata rpefa ce OnpeaensT uype3 AUdepeHLManHoTo ypaBHeHWe Ha
enacTuyHaTa nuHms. PelueHneTo Ha TOBa ypaBHEHWE Ce peanuavupa NocpeacTBOM YMCIEHOTO My MHTErpupaHe. 3a NpexoaHus yyacTbk e NpUnoxXeH anroputbm 3a
onpepensHe Ha paguycuTe, Ternata 1 KopaBUHUTE Ha CerMeHTuTe. 3a Lienns Ban ca NomyyeHn ONopHUTE peakLyn 1 OrbBaLyyTe MOMEHTU B MPUMNOXHUTE TOYKU Ha
cunuTe. Ypes YncneHo MHTerpupaHe ca nonyyYeHn HakNoHUTe Ha enacTuyHaTa NMHUA 1 NpemMecTBaHUATa B CbLLMTE TOuKW. [PeACTaBeHOTOo peLLeHme 3a onpeaensHe
Ha YecToTaTa Ha COBCTBEHNTE TPENTEHUs BbB Ban C NPEXOAEeH Y4acTbk NOTBbPXK/AaBa BEPHOCTTA HA aHANMTUYHIUTE U3pa3u 3a ONUCaHUTE NO-Tope BENNYMHM.

KniouoBu AYMU: CTbNaneH ean, cobcTBeHn TPENTeHus, I'IpVI6ﬂI/I3VITel'IeH MeToq, ,Ell/l(?bepeHU,VlaJ'lHO YpaBHEHWE Ha enacTuyHa NNHNA.

Introduction Methods

The natural frequency of a stepped shaft is the object of 1. Formulation of the problem
investigation by specialists calculating the shafts. The
approximate method is well known. It applies numerical A stepped cylindrical shaft is presented at Figure 1 (Anchev
integration to resolve the differential equation of the elastic line et al, 2011). The lengths of three sections are: /, =12 cm,
(Feodosev, 1965). Refining this method, an algorithm for the .
transition section of the shaft is added (Trifonova-Genova et l,=05cm and [;=55cm. The radius of the

al., 2017). This algorithm consists of eleven steps. They transition zone is: 7 = 0.5 cm , the diameters of the first

mglude formulae by.Wh'Ch the .current d|ameter .an(.i the section and the beginning of the second and the third section
stiffness of each section are obtained. The main objective of

this article is to apply this algorithm to a concrete stepped shaft ~ Of the relevant shaft are, respectively, D; = 5.6 cm,
with a curvilinear transition. D,, = 5.0cm,and D; =4.0cm.
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2. Method for determining the of internal forces

To determine the natural frequency, the approximate method
is applied (Feodosev, 1965). According to it, the shaft is
divided into portions with sized widths in the first and the third

sections: Ax; = Ax; =1cm, and in the second section -
Ax, =0.1cm.

Jrl .!2 /‘;

o e : —

Fig.1. Stepped shaft with a curved segment

Current diameter D, , in the second segment (section)

For determining this diameter for each segment of this
section, the algorithm of (Trifonova-Genova et al., 2017) is
applied. For given values of arrows, the chords and the
diameters are calculated. The results are given in Table 1.

Table 1.
Diameters of a segment with a transitional curved section

Point

of f; ai DZ,o
segment mm mm mm

13 05 4.4 46

14 1.5 7.5 43

15 2.5 8.7 41

16 3.5 9.5 40

17 45 10.0 40

Stiffness of the segment of the shaft
The Young’s modulus of shafts is taken by (Kisiov, 1978)

(E =1.98.10*xg / cm®). With a known diameter of each

segment of the shaft, the moment of inertia is calculated. The
stiffness of the segments in the three sections are given in

Table 2.

Table 2.
Stiffness of the segments of the shaft
i i 6 2
Section points | g 7,10 |_kgcm J

1 1-12 95.536

2 13 43.516

2 14 33.227

2 15 27.464

2 16 24,881

2 17 24.881

3 18 24.869

3 19-23 24.869
Weight of the segments

The volumetric weight of the material of the shaft
isy =7.8.10kg [ cm®, but the weight of the segments
is given in Table 3.
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Table 3.
Forces
Section points P 1 [kg]

1 1-12 0.1921
2 13 0.0128
2 14 0.0111
2 15 0.0105
2 16 0.0100
2 17 0.0098
3 18 0.0480
3 19-23 0.0981

The segment with the principal point number 18 has a width
of 0.5 ¢m . This is the reason why the weight is half of the

weight of the segments to follow.

The reactions of a support

The computational scheme is a free beam loaded by
weights. The values of the first iteration are given in Table 3.
The reactions of support are calculated with the methods of
statics (Vulkov, 2004; Vulkov et al, 2013). Their values

are: A' =1.635 kg , B’ =1.262 kg .

Bending moment diagram

The moments in the individual points are determined with the
methods of the resistance of the materials (Vulkov, 2011). The
values of first iteration are given in Table 4.

Table 4.
Bending moments
point M,-I point Mil
[kgem] [kgem]

A 0 13 5.758
1 0.818 14 5.689
2 2.261 15 5.620
3 3.512 16 5.550
4 4571 17 5.478
5 5.437 18 5.275
6 6.112 19 4.696
7 6.595 20 3.827
8 6.885 21 2.860
9 6.984 22 1.794
10 6.890 23 0.631
1 6.604 B 0
12 6.126

3. Natural frequency

Natural frequency is obtained through the following relations.
In the beginning, the following proportion of the bending
moments for each point is calculated from Table 4 to the
stiffness from Table 2. This proportion is multiplied by the width
of each segment. With the method of numerical integration, the
slope of an elastic line is obtained (Feodosev, 1965).
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The displacements w;, are represented by an equation
which has two coefficients. They are obtained by the boundary
conditions: w, (0)=0, w, (Z)=0. For the concrete shaft,

C/ =-0.5827.10° and

C; = 0. The displacement for the concrete position X, of

these  coefficients  are:

point 7 in the computational scheme is determined.

Finally, two multiplications are composed. The first includes
the displacement and the force at each point. The second
involves the displacements elevated to the second degree and
the force. The values are given in Table 5.

The second iteration takes into account that, in process of
vibration, the shaft is loaded not only with the force of weight
but with the force of inertia as well. From the first
approximation, the values of displacements and the square of
the frequency are also used. For the second iteration, the force

B” is calculated according to the formula given in (Trifonova-

Genova et al., 2017). After that, the reactions of support, the
bending moments, the slope of the elastic line, and the
displacements of the points are determined in the
computational scheme, as well as both multiplications
analogically to the second iterations. The values are given in
Table 6.

Table 6.
Table 5. Results of the second iteration
Results of the first iteration X, Wi” })i[l })i” W,-” pll (w i )2
, ! P'w! 1(y1 ¥ L
xl Wl i i I)z (W[ ) 10—6 10—6 10—12
-6 -6 -12
10 10 10 [em] | [em] [kgem] | |kgem?
[cm] [cm] [kgcm] [kgcm 2 ] A 0 0 - 0 0
A 0 0 0 0 1 0.5 0.274 | 0.020 0.006 0.002
1 05 | 0283 0.054 0.015 2 | 15 | 0808 | 0060 | 0048 0.039
2 15 | 0833 0.160 0.133 3 | 25 [ 1311 ] 0097 | 0127 0.166
3 25 | 1347 0.259 0.348 4 | 35 [ 1771 | 0130 | 0230 0.408
4 35 | 1813 0.348 0.631 5 | 45 [ 2478 | 0159 | 0347 0.756
5 45 | 2222 0.427 0.948 6 | 55 | 2523 | 0.184 | 0465 1172
6 55 2.567 0.493 1.265 7 | 65 | 2801 | 0204 | 0571 1.600
7 6.5 2.843 0.546 1552 8 | 75 |3006 | 0219 | 0657 1.976
8 75 | 3.046 0.585 1783 9 | 85 3139 | 0228 | 0716 2.246
9 85 | 3177 0.610 1939 10 ] 95 | 3197 | 0232 | 0743 2.374
10 95 | 3236 0.622 2.011 1| 105 | 318 | 0231 | 0737 2.349
11 | 105 | 3225 | 0620 1998 12 ] 115 | 3109 | 0226 | 0.703 2.186
12 | 115 | 3151 | 0605 1907 13 | 1205 | 3.027 | 0015 | 0.044 0.134
13 | 1205 | 3070 | 0039 0.120 14 | 1215 | 3010 | 0013 | 0038 0.114
15 [ 1225 | 2.991 | 0012 | 0.036 0.106
522 s | oow | owe | |16 | 1235 |23 0ot oo | oion
45 [ 2047 | 0. 0.032 0.095
o e Do oo oo | o e o | om
' : ' : 19 [ 1350 | 2532 | 0094 | 0239 0.605
18 | 1275 | 2303 | 0139 0405 20 | 1450 | 1947 | 0073 | 0.142 0.276
19 | 1350 | 2577 0.253 0.652 21 11550 [ 1255 | 0047 | 0059 0,074
20 | 1450 | 1.989 0.195 0.388 22 11650 | 0498 | 0.019 | 0009 0.005
21 | 1550 | 1285 0.126 0.162 23 11750 T 0280 | 0011 | 0.003 0,001
2 | 1650 | 0510 0.050 0.025 5 11800 | 0 5 5 5
23 | 1750 | 0.291 0.029 0.008 3 1% 7210
B | 18.00 0 0 0
5 6.228 16.671

After summing the last two columns, the square of the
natural frequency is calculated:

1\? 6 -2 .
(a) ) =366,494.10" 5°. The natural frequency is

o' =19.144.10°s™" by the first iteration of the
approximate method (Kisyov, 1978).
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The calculation from the first iteration are repeated and the
natural frequency is obtained: @” =18,701.10° s™*. The
value is compared to the value of the first iteration and a
difference of 2.29% is obtained. This is sufficient for the

practice accuracy. Therefore, the iterations are terminated and
the value is finally chosen.
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4, Key Findings

In this article, the approximate method is applied for
calculating the value of natural frequency in a concrete shaft
with a transitional curvilinear section. The algorithm is applied
for this section and the values of diameters and weights are
obtained. The successive parameters, like the reactions of the
supports, the bending moments, the slopes, and the
displacements of points in the free beam are given here.
Finally, the natural frequency for two iterations is calculated.

Conclusion

The numerical results of this work confirm the formulae and
the algorithm for stiffness in the curvilinear section. They give a
more precise solution to the problem of determining the natural
frequency in a shaft with a curvilinear section. This is the
advantage of the proposed method. It can be extended to
shafts with more sections.

No matter how weak the curvature in a curvilinear section is,
it is desirable to take it into account in each real shaft.
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