
Journal of Mining and Geological Sciences, Volume 62, Number 3, 2019

98

ALGORITHM FOR IoT-SENSOR DESIGN AND MAINTENANCE SERVICE

Mila Ilieva-Obretenova, Elena Blagoeva, Boiko Karkov

University of Mining and Geology “St. Ivan Rilski”, 1700 Sofia; mila.ilieva@mgu.bg; elena.blagoeva@mgu.bg; boiko.karkov@mgu.bg

ABSTRACT. Internet of Things (IoT) is the extension of Internet to physical devices and everyday objects. Embedded with electronics, Internet connectivity, and other
forms of hardware (such as sensors), these devices can communicate and interact with others over the Internet, and they can be remotely monitored and controlled.
The paper offers an algorithm for IoT-sensor design and Maintenance Service with a high level of detail. It is intended for students and junior designers. The
hypothesis is the following: unambiguous steps are defined by the usage of appropriate methods. The methodology includes a theory for: semiconductor devices,
Wheatstone bridge, analogue-to-digital conversion with successive approximation, finite elements method, unified modelling language (UML) and programming
language Verilog. The algorithm is illustrated by an example for a pressure sensor. The result is an algorithm in two parts: simulation design and service design. The
simulation design includes hardware design and simulation elements calculation. The service design includes definitions of Managed Objects classes with names,
attributes, operations and methods. With the chosen detail level, the algorithm is a good base for designing a system with two sensors (e.g. a pressure sensor and a
temperature sensor) and for experiments in specific working environment (e.g. underground mine).

Keywords: IoT-sensor, pressure sensor, temperature sensor, simulation, service

АЛГОРИТЪМ ЗА ПРОЕКТИРАНЕ НА IoT -СЕНЗОР И ОБСЛУЖВАНЕ НА ПОДДЪРЖАНЕТО
Мила Илиева-Обретенова, Елена Благоева, Бойко Кърков

Минно-геоложки университет "Св. Иван Рилски", 1700 София

РЕЗЮМЕ. IoT (Internet of Things) е разширението на интернет към физически устройства и обекти за ежедневна употреба. Снабдени с електроника,
интернет свързаност и други форми на хардуер (като сензори), тези устройства могат да комуникират и да взаимодействат с други чрез интернет и могат
да бъдат дистанционно наблюдавани и контролирани. Предлага се алгоритъм за проектиране на IoT-сензор и обслужване на поддържането с висока
степен на детайлизация. Предназначен е за студенти и младши проектанти. Хипотезата е следната: Еднозначност на стъпките се постига чрез използване
на подходящи методи и средства. Методологията за проектиране включва теории за: полупроводникови елементи, Уитстонов мост, аналогово-цифрово
преобразуване с последователна апроксимация, метод на крайните елементи, унифициран език за моделиране (UML) и език за програмиране Verilog.
Алгоритъмът се илюстрира с пример за сензор за налягане. Резултатът се състои от алгоритъм в две части: проектиране на симулация и проектиране на
обслужване. Проектирането на симулацията включва: проектиране на хардуер и изчисляване на елементите на симулацията. Проектирането на
обслужването съдържа класове управлявани обекти с имена, атрибути, операции и методи. С избраната степен на детайлизация алгоритъмът
представлява добра основа за проектиране на система с два сензора (например сензор за налягане и сензор за температура) и за експерименти в
специфична работна среда (например подземен рудник).

Kлючови думи: IoT-сензор, сензор за налягане, сензор за температура, симулация, обслужване

Introduction

IoT (Internet of Things) is the extension of Internet to
physical devices and everyday objects. Embedded with
electronics, Internet connectivity, and other forms of hardware
(such as sensors), these devices can communicate and
interact with others over the Internet, and they can be remotely
monitored and controlled. The recent developments are
represented in articles with low level of detail (Miller, 2018) or
represent concepts of very high level (Ruh, 2018; Perera et al.,
2018). This article offers an algorithm for IoT-sensor design
and Maintenance Service with high level of detail. It is intended
for students and junior designers. Unambiguous steps are
defined by the usage of appropriate methods.

Methodology

The design methodology includes the application of the
theory for: semiconductor devices (Lienig, 2017), Wheatstone
bridge (Ekelof, 2001), analogue-to-digital conversion with
successive approximation (Baker, 2010), finite element method
(Logan, 2011), Unified Modelling Language – UML (Fowler,
2004) and programming language Verilog (Bergeron, 2012).
The algorithm is illustrated with a pressure sensor.

Results

Simulation design
Hardware design. 1. Block-diagram design: Fig.1 shows a
block-diagram of a monitoring system for the liquid level. It
contains a sensor, an amplifier, an analogue-to-digital
converter (ADC), a microcontroller, a RF-transmitter, a
gateway, a power supply and a clock.

mailto:mila.ilieva@mgu.bg
mailto:elena.blagoeva@mgu.bg
mailto:boiko.karkov@mgu.bg

Journal of Mining and Geological Sciences, Volume 62, Number 3, 2019

99

Fig. 1. Block-diagram of a monitoring system for the liquid level

2. Measure scheme for sensor resistance: Fig. 2 shows a
measure scheme for sensor resistance with a Wheatstone
bridge and an amplifier.

+

Rx
Pressure
sensor

R2

R1 R3

A

Gain=63

Vout

Vx

R2/R1 = Rx/R3

Fig. 2. Measure scheme for sensor resistance

3. Detailed block-diagram of ADC: Fig.3 shows a detailed
block-diagram of ADC with successive approximation, where
SAR is the Successive Approximation Register, Vref is the
Reference Voltage, DAC is the Digital-to-analogue converter,
Vin is the Input Voltage, S/H is the sample and hold circuit and
EOC is the End of Conversion.

The operation of ADC with successive approximation is the

following: SAR is initialised so that the most significant bit
(MSB) is equal to a digital 1 (Vref). This code is fed into the
DAC, it is converted to the analogue equivalent and is fed into
the comparator circuit for comparison with the sampled input
voltage Vin. If this analogue voltage exceeds Vin, the
comparator causes the SAR to reset this bit (turns it to 0).
Otherwise, the bit is left as 1. Then the next bit is set to 1 and
the same test is done. The binary search continues until every
bit in the SAR has been tested. The resulting code is the digital
approximation of the sampled input voltage and is finally the
output by the SAR at the end of the conversion. Fig.4 shows
the operation of ADC with successive approximation for the
binary digit 00000001.

Vref = 10000000

SAR
EOCCLOCK

DAC

D7 D0

S/H
Vin

COMPARATOR
-
+

Fig. 3. Detailed block-diagram of ADC

Fig. 4. Operation of ADC with successive approximation

4. System improvement: Fig.5 shows a system improvement
with a group of sensors, which could be connected to one
multiplexor (MUX), so they could monitor a group of
parameters, characterising a certain territory – a mining
territory, an environment territory, etc.

SENSOR

SENSOR

A

MUX ADC
MICRO-

CONTROLLER
RF-

TRANSMITTER

GATEWAY

CLOCKPOWER SUPPLY

Fig. 5. System improvement: System with a group of sensors

Simulation elements calculation. 1. Sensor choice: A
nonlinear resistor is chosen with resistance dependent on the
applied pressure: R=f(P). 2. Calculation of dependence
pressure-voltage: The voltage is measured as a function of
pressure with the Wheatstone bridge: U=f(P). The minimum
output voltage of the sensor is 0,1mV=1.10-4V. The maximum
output voltage of the sensor is 35mV=3,5.10-2V. The maximum
applied pressure is 350,25kPa. The pressure for 0,1mV in kPa
is:

128

64

32

16
8 4 2 1

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8

Journal of Mining and Geological Sciences, Volume 62, Number 3, 2019

100

 
. x .

P kPa
350 25 0 1

1
35

 (1)

3. Amplification calculation for the voltage after sensor: ADC
works in the range from 0 to 2,2V. Therefore, the voltage after
the sensor needs amplification AU:


 U

.
A

. x 2

2 2
63

3 5 10 (2)

4. Calculation of successive approximation step of ADC: For
the conversion of the voltage into a digital signal an 8-bit ADC

is used. The possible counts are:

C = 28 =256 (3)

The active counts are:

C1 =28 – 1 = 255 (From 0 to 255) (4)

The approximation step is calculated from the ADC range and
the possible counts are:

 
.

V . . V / count32 2
8 59375 10

256 (5)

Table 1 shows visualization of voltage distribution in Excel.

Table 1: Voltage Distribution in Excel

2^8 2^7 2^6 2^5 2^4 2^3 2^2 2^1 Voltage,V Pressure, kPa Pressure, mm

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0.008594 0 0

0 0 0 0 0 0 1 0 0.017188 0 0

0 0 0 0 0 0 1 1 0.025781 0 0

0 0 0 0 0 1 0 0 0.034375 0 0

0 0 0 0 0 1 0 1 0.042969 0 0

0 0 0 0 0 1 1 0 0.051563 0 0

0 0 0 0 0 1 1 1 0.060156 0 0

0 0 0 0 1 0 0 0 0.06875 0 0

0 0 0 0 1 0 0 1 0.077344 0 0

0 0 0 0 1 0 1 0 0.085938 0 0

0 0 0 0 1 0 1 1 0.094531 0 0

0 0 0 0 1 1 0 0 0.103125 0 0

0 0 0 0 1 1 0 1 0.111719 0 0

0 0 0 0 1 1 1 0 0.120313 0 0

0 0 0 0 1 1 1 1 0.128906 0 0

0 0 0 1 0 0 0 0 0.1375 1.45 148

0 0 0 1 0 0 0 1 0.146094 2.9 296

0 0 0 1 0 0 1 0 0.154688 4.35 444

0 0 0 1 0 0 1 1 0.163281 5.8 592

0 0 0 1 0 1 0 0 0.171875 7.25 740

0 0 0 1 0 1 0 1 0.180469 8.7 888

5. ADC scale calculation: The ADC scale is calculated from the
possible counts and the ADC range:

 V
256

C 116 counts / V
2.2 (6)

6. Calculation of Wheatstone bridge offset in V: We suppose
that the Wheatstone bridge is not ideally balanced and prior to
the pressure application the voltmeter reads 2mV=2.10-3V. The
voltage after the amplifier is:

Voffset = 2x10-3x63 = 126x10-3V = 0.126V (7)

7. Calculation of Wheatstone bridge offset in counts:

offset = 0.126x116 =14.6 =~15 counts (8)

8. Calculation of active counts of the ADC reporting the
pressure:

CA = 255 – 15 = 240 counts (9)

9. Calculation of the sensor slope in counts/kPa:

S1 =
240

350.25
= 0.68522 counts/kPa (10)

10. Calculating of the sensor slope in V/kPa:

S2 = 0.68522x8.59375x10-3 = 5.88865x10-3 V/kPa =

 = 5.88865x106 V/Pa (11)

11. Defining the voltage function: The voltage function is linear
from the type:

Journal of Mining and Geological Sciences, Volume 62, Number 3, 2019

101

у = ax + b, (12)

Where у is the output voltage Vout in V, аs is the slope S2 in
V/kPa, х is the pressure Р in kPa and b is offset Voffset in V.

Vout = S2xР + Voffset (13)

12. Calculation of the dimension on X axe in kPa/count:

m= 
350.25

1.45
240

 kPa/count (14)

13. Calculation of the dimension on X axis in mm/count: For
practical aims let’s assume that the fluid height is directly
proportional to the pressure:

P=ρgh, (15)

Where Р is the pressure in kPa, ρ is the fluid density (for water
ρ = 1kg/l), g is the standard gravity 9,8m/s2 и h is the fluid
height over the sensor in meters. Then

Factor = 


P 1.45

xg 1x9.8
= 0.147959 m/count = 148 mm/count

 (16)
Fig.6 shows the dimensions: dimension on X axis in kPa/count
and dimension on X axis in mm/count.

The figure shows that 1kPa corresponds approximately to 100
mm.

15

U [V]

P [kPa]

8,5.10^-3

1,45
148 P [mm]

Fig. 6. Dimensions on X axis

Checking: For 117 counts: (117-15)x1.45 = 147.9kPa,
147.9

9.8

=15.09 m, (117-15)x148 = 15096 mm;

for 219 counts: (219-15)x1.45=295.8kPa,
295.8

9.8
= 30.184m,

(219-15)x148=30192mm. The check shows a difference in the
calculations of about 1cm.

14. Definition of the function for fluid height in mm:

h = (ncounts – offset) * factor, (17)

where ncounts is the number of counts of ADC, corresponding
to the analogue value of the sensor voltage.

Service Design

UML diagram synthesis. Fig.7 shows a UML diagram for
Managed Objects classes for Maintenance Service.

Fig. 7: UML diagram of Managed Objects classes for Maintenance Service

Definitions of Managed Objects (MO) classes with names,
attributes, operations and methods.
1. MO MaintenanceService represents the information for
maintenance service, which helps to monitor the process in
normal working conditions and to avoid failures.
2. MО fluidHeight represents a function for calculation of
sensor constants. А) Attributes: Attribute gravity represents
gravitational field. Attribute density_of_water represents one
of the physical properties of water – density. Attribute
ADCrange shows the maximum voltage of ADC. Attribute
ADCbits represents the number of ADC bits. Attribute
pressureMaximum represents the maximum pressure applied
on the sensor. Attribute sensorOutput_min shows the
minimum output voltage of sensor. Attribute

sensorOutput_max shows the maximum output voltage of
sensor. Attribute WBridgeIntercept shows the initial voltage in
Wheatstone bridge. Attribute ncounts represents the number
of counts reached by certain pressure. B) Operations:
Operation MinPressure calculates the minimum pressure
measured by the sensor. Operation Amplification calculates
the necessary amplification so that the sensor range
corresponds to ADC range. Operation ADCcounts calculates
the number of ADC counts. Operation ADCfactor calculates
the ADC step in V/count. Operation ADCscale calculates the
ADC scale in counts/V. Operation
InterceptVoltageAfterAmplifier calculates the initial voltage
after amplifier. Operation offset calculates the initial voltage,
reported from ADC. Operation ActiveADCcounts calculates

Journal of Mining and Geological Sciences, Volume 62, Number 3, 2019

102

the ADC counts with pressure. Operation Slope1 calculates
the slope in counts/kPa. Operation Slope2 calculates the slope
in V/kPa. Operation PressureScale calculates the dimension
on X axis in kPa/count. Operation Factor calculates the
dimension on X axis in mm/count. Operation read_ncounts
reads the ADC counts by certain pressure. Operation
fluidHeight calculates the liquid height over the sensor.
3. MО Timer represents a timer, which awakes the processor
periodically for fluid height measurement. А) Attributes:
Attribute bHaveLastRead is a Boolean variable, which shows
the processor is awakened. Attribute BigPeriod shows the
working period of the timer, i.e. 50000000ns=50000us.
Attribute PeriodsNumber represents the number of periods
„asleep-awakened“ of the processor for the timer`s period. B)
Operations: Operation UartStdOutnit initialises the timer`s
turn off. Operation SysTick_Config calculates the duration of
one period of the timer.
4. MО PreventiveFunction represents the programmes for
testing the fluid height by normal working conditions.
А) Attributes: Attribute LastRead represents the value of the
last read. Attribute mmH2O shows the value of recent reading.
Attribute permissible_delta represents the allowed difference
in mm, i.e. 500mm=50cm. B) Operations: Operation delta
calculates the difference between the last and the recent
reading. Operation assign_lastRead assigns the recent
reading as the last reading.
5. MО Result represents the result after execution of a
preventive function. А) Attributes: Attribute ID represents the
notification number after the preventive function. B)
Operations: Operation printf writes a notification after the
preventive function.
6. MО AlarmLog represents log Alarms, containing the
collected maintenance events. А) Attributes: Attribute ID
represents the log number. Attribute N represents the log size,
i.e. 1000 records. B) Operations: At this stage operations for
the log are not defined.
7. MО AlarmRecord represents the Alarm reaction, if a failure
occurs. А) Attributes: Attribute ID represents the alarm number.
B) Operations: Operation printf writes an alarm in log by
exceeding the allowed difference.
8. MО TestingFunction represents the testing programmes
for detection of failure: 1.Calculation of the counts number by
increasing or decreasing the liquid level over the allowed
difference. 2. By reaching a crucial level [mm], i.e.
10000mm=10m, visualisation of the decreasing level speed

starts. The crucial level in counts is 83. А) Attributes: Attribute
adc_dac_data shows the liquid level in counts. Attribute
liquid_level shows the liquid level in mm. Attribute gravity
shows the earth gravity. Attribute density_of_water shows the
water density. Attribute steadyTime shows the steady time for
procedure execution, i.e. 750 000ns=750us. Attribute
leakingTime shows the time for leaking simulation, i.e.
10000ns=10us. B) Operations: Operation Pressure calculates
the pressure by the liquid level in mm and earth gravity.
Operation Vout calculates the output voltage by slope, pressure
and initial voltage. Operation ncount calculates the counts
number by output voltage and ADC scale. Operation
liquid_level calculates leaking 1% every 1us.
9. MО Localisation contains information about the counts by
which a failure is reported. А) Attributes: Attribute ID
represents the number of localisation. B) Operations:

Operation
assign adc_compare assigns the next count smaller than the
calculated.
Synthesis of operations` methods. 1. fluidHeight

Int fluidHeight (int ncounts) {
 /* model for pressure sensor:
 MinPressure = PressureMaximum *
sensorOutput_min / sensorOutput_max
 Amplification=ADCrange/sensorOutput_max
 ADCcounts = 2^ADCbit – 1
 ADCfactor = ADCrange/2^ADCbit
 ADCscale = 2^ADCbit/ADCrange
 InterceptVoltageAfterAmplifier =
WbridgeIntercept * Amplification
 offset = InterceptVoltageAfterAmplifier *
ADCscale
 ActiveADCcounts = ADCcounts – offset
 Slope1 = ActiveADCcounts /
pressureMaximum
 Slope2 = Slope1 * ADCfactor
 PressureScale = PressureMaximum /
ActiveADCcounts
 Factor = PressureScale / Density_of_water *
gravity
 */

 const int offset = 15;
 const int Factor = 148;

 return (ncounts – offset) * Factor;
}

2. Timer

Int main (void)

{ bHaveLastRead = 0;

 // UART init
 UartStdOutInit ();

 // set SysTick interrupt timer
 SysTick_Config (50000000/10000);

 // go to sleep
 while (1)
 PreventiveFunction ();
 return 0;
}

UART is a Universal Asynchronous Receiver-Transmitter. The
period of the timer is 5µs.

3. PreventiveFunction. The method for PreventiveFunction
combines attributes and operations for the following objects:
PreventiveFunction, Result, AlarmLog и AlarmRecord.

void PreventiveFunction (void) {
 int n_c = ncounts;
 int mmH2O = fluidHeight(n_c);

Journal of Mining and Geological Sciences, Volume 62, Number 3, 2019

103

 printf (“ADC reports %d count, %d mmH2O\n”,
n_c, mmH2O);
 if (!bHaveLastRead) {
 bHaveLastRead=1;
 lastRead=mmH2O;
 }
 else { int delta = mmH2O – lastRead;

if ((delta < -500) II (delta > 500)) {
 printf (“***\n*** Significant

change in fluid level: %d mm, now %d
mmH2O\n***\n”, delta, mmH2O);

 lastRead=mmH2O;
}

 }
}

4. TestingFunction. The method TestingFunction unifies the
attributes and operations of the following objects:
TestingFunction и Localisation.

module TestingFunction (adc_dac_data, adc_compare)

 input [7:0] adc_dac_data;
 output adc_compare;

 real liquid_level, pressure, Vout, ncount;

 initial begin
 liquid_level = 10000; //mm

 // hold steady for the first 750 us
 #750000;

 // start leaking 1% every 1us
 forever begin

 liquid_level = liquid_level * 0,99;
 #10000;
 end
 end // initial begin

 always @(liquid_level)
 begin
 pressure=liquid_level*9,8;
 Vout=pressure*5,88865.e-6+0,126
 ncount=Vout*256/2,2
 end

 assign adc_compare = adc_dac_data < ncount;

endmodule // TestingFunction

It could be seen that the fluid level falls with 1 m for 10 µs.

Conclusion

The paper represents an algorithm for the design and service
of an IoT-sensor. It contains two parts and meets the
requirements of designers and service management. The
contributions of paper are as follows:
1. The steps of an algorithm for design and simulation of IoT-
sensor are defined with high level of detail.
2. The steps of an algorithm for Maintenance Service are
defined. An object-oriented method is used. The Managed
Objects (MO) classes, organised in hierarchy, are defined. The
attribute, operations and methods of classes are defined.
3. In order to be verified, the algorithm is illustrated with a
pressure sensor.
4. The integration of two areas is demonstrated– sensor design
and service management – by the interaction of steps from
both levels.
5. The steps for reusage are developed: within the frame of
one level – for design of different kinds of sensors (for
temperature, for humidity, for illumination, etc.) or for service in
different functional areas (configuration, security, performance
etc.); between the two levels – for sensor design and for
service design.

6. A scheme for future work with two or more sensors and a

multiplexor is proposed.
The future work could be considered in the following aspects:
1. Development of new functional elements – sensors for
different environments;
2. Service modelling for the new elements and development of
corresponding information models;
3. Modelling of sensor communications and considering
sensors as network elements;
4. Integration of IoT with other platforms, i.e. Smart Grid.

References
Baker, J. 2010. CMOS circuit Design, Layout, and Simulation,

3rd Edition. Wiley-IEEE; 1208 p.
Bergeron, J. 2012. Writing Testbenches: Functional

Verification of HDL Models (2nd ed.). Springer.
Ekelof, S. 2001. The Genesis of the Wheatstone Bridge.

Engineering Science and Education Journal, 10, 1, 37–40.
Fowler, M. 2004. UML Distilled: A Brief Guide to the Standard

Object Modelling Language. 3rd ed. Addison-Wesley
Professional.

Lienig, J., H. Bruemmer. 2017. Fundamentals of Electronic
Systems Design. Springer International Publishing. p. 1.

Logan, D. L. 2011. A first course in the finite element method.
Cengage Learning.

Miller, J. 2018. Proof-of-concept: The day after. Mentor® A
Siemens Business. www.mentor.com

Perera, C., Mahmoud Barhamgi, Supama De, Tim Baarslag,
Massimo Vecchio, Kim-Kwang Raymond Choo. 2018.
Designing the Sensing as a Service Ecosystem for the
Internet of Things. – Internet of Things Magazine,
December 2018, 1, 2.

Ruh, W. 2018. Drilling Deep into Digital Industrial
Transformation will determine who survives and thrives. –
Internet of Things Magazine, September 2018, 1, 1.

http://www.mentor.com/

