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VIBRATIONS OF SHAFT CAUSED BY INERTIAL EXCITATIONS

Anastas I. lvanov
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ABSTRACT. Small vibrations of a cylindrical shaft caused by inertial excitations are studied in this paper. The shaft is vertically situated. It consists of two sections
with different cross sections. It is supported by a spherical and a cylindrical joint. The two supporting devices have horizontal elasticity. Between the two supports, and
also at the upper end of the shaft, rotationally movable concentric masses, which are eccentrically situated towards the shaft axis, are mounted. They rotate with a
constant angular velocity relative to the rotary axis and they create unfavourable inertial excitations. Due to the elasticity of the shaft, as well as to the elastic
horizontal supports, small forced vibrations of the two concentric masses are created in planes perpendicular to the rotary axis. The shaft is modelled as a discrete
mechanical system with four degrees of freedom. Differential equations, describing the small vibrations of the system, are derived. A programme of MatLab and
Simulink has been compiled and used to integrate numerically derived equations. Calculations have been made for the different unfavourable positions of the
concentrated masses relative to a plane perpendicular to the shaft rotary axis. All results are illustrated with appropriate graphs. Some important for the practice
conclusions are presented, which can be used in the design of such shafts.
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TPENTEHWA HA BAJN, NPEOU3BUKAHW OT MHEPLIUOHHU CMYLLEEHUA
AHacmac U. UsaHoe
Bucwe mpaxcnopmHo yyunuwe "Todop Kabnewkos”, 1574 Cogpus

PE3IOME. B cratusita ce uscnengat Mankute TPenTeHUs Ha LAMMHOPWYEH Ban, NPeAn3BUKaHM OT MHEPLMOHHM CMYyLLeHWs. BanbT e pasnonoxeH BepTukanHo.
CbCToM Ce OT fiBa y4acTbka C pasnuyHW Mo pa3mep HanpeyHn ceyeHns. MopanpsH e Cbe chepiyHa U LMNMHAPUYHA cTaBa. [iBeTe OnopHM YCTpoicTBa umat
XOPW30HTamHa enactuiHocT. Mexay TsX, 1 B Hall-TOpHUS Kpal Ha Bana, ca MOHTMPAHN POTALMOHHO ABMXELLM Ce CIPSMO OCTa MY eKCLEHTPUYHO PasnornoxeHu
KOHLEHTpUpaH! mMacu. Te Ce BBPTAT C MOCTOSHHA BITIOBA CKOPOCT CMPSMO POTALMOHHAaTa OC W Cb3faBaT HebrnaronpusTHU MHEPLMOHHM cMyLyeHns. Mopaam
€NnacTUYHOCTTa Ha Bana, kakTo 1 Nopaan enacTyH1TE B XOPU3OHTANHO HanpaBneHne Onopu, Ce NOpaxaaT Manki NpUHYAEHN TPEMTEeHNs Ha [BeTe KOHLEHTpUpaHm
MacK B paBHWHM, NEPNEHANKYNSAPHIA Ha poTaLMoHHaTa oc. BanbT e MogenupaH kaTo AuCKkpeTHa MexaHu4Ha ciucTemMa ¢ YeTUpu cTenenm Ha csobopa. M3seaern ca
AndepeHLMantnTe ypaBHEHUs, KOUTO OMUCBAT MankuTe TpenTeHus Ha cucTemarta. CbcraBeHa e mporpama Ha Matlab w Simulink, ¢ nomouwra Ha kosiTo ca
WHTErpUpaHn YNCMEHO W3BEAEHUTE YpaBHeHWs. VI3BbpLUEHN ca u34ncnerns 3a HebnaronpusTHUTE B3aUMHM PA3NONOXEHNS Ha KOHLEHTPUpaHUTE Macu CrpsiMo
paBHWHa NepneHaVKYNApHa Ha ocTa Ha Bana. Beuuku pesynTatit ca oHarnefenm ¢ noaxoasium rpadukv. CtatnsiTa 3aBbpLUBa C BaXHM 3a MpaKTiKaTa U3BOAM, KOUTO
MorarT ia Ce M3nonaeart npy NPOeKTMPaHETO Ha nofjo0eH BiA Banose.

KniouoBu AyMU: Ban, TPENTEeHUA, UHEPLIMOHHU CMYLLIEHUSA, KWNHEMATUYHN XapakTepUCTUKN

Introduction difficult to solve using only analytical solutions, especially for
the systems with many degrees of freedom, (lvanov, 2017).
The engineer needs to make many calculations numerically for
shafts. Most often they are examined for torsion and bending multiple variants, which are .d.epe.ndent on a number of
because their main purpose is to transmit axial moments parameters. Only then, the optimisation analysis can be made
(Sevastakiev et al., 1986). (Cheshankov et al., 2.004)' .-

In the presented article, the shaft is examined only on a The above-mentioned problems lead to the compilation of

generalised bending caused by inertial harmonic excitations. the main purpose O.f this .study: to de.ter-mme the maximum
Such disturbances are always presented in the rotary machines values of the basic kmematu;al charactgrls:tlcs of a vertical shaft
when unbalanced masses are available (Sergeev et al., 2018). from the most unfavourable inertial excitation.

Harmful vibrations, which are small oscillations with high
frequencies and relatively small amplitudes, accompany each ~ Mathematical model
machine aggregate as crushers, mills and others (Hristova, et

Many machines and aggregates use different types of

al., 2018). Reducing them to some minimal normative values is A vertically positioned cylindrical shaft, which has two

the most important engineering problem for solving by any sections, is studied.

constructor (Petrovic, 2017; Sergeev et al., 2018). , The first section has a length 1, and bending stiffness
For example, the three-dimensional vibrations of a machine . .

aggregate, solved numerically with a suitable program for this E.1,, and the second section has length 1, and bending

purpose, are studied in the paper (lvanov, 2017). stiffness E.. 1, (Fig. 1).

One of the most important and basic task, the
determination of eigen frequencies and eigen forms, is very
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The shaft is supported at its lower end by a spherical joint,
which is equivalent to three simple rod joints. The vertical rod
joint is assumed to be perfectly rigid. The two mutually
perpendicular and horizontal rod joints are assumed to be
ideally elastic with linear stiffness coefficients c, .

Fig. 1. Dynamical model of the shaft

At the end of the first section and at the beginning of the
second one, the shaft is supported by a cylindrical joint. It is
equivalent to two horizontal rod joints, which are assumed to be

ideally elastic with linear stiffness coefficients ¢, .
In the middle of the first section are centrally located a
concentrated mass m,;, and an unbalanced mass m,,, and

m, =m,, +m,, . The unbalanced mass m,, is located at a
distance e, from the shaft axis.

At the upper end of the shaft are centrally located a
concentrated mass m,, and an unbalanced mass m,, with

an eccentricity €,, andm, =m,, +m,, .

The two unbalanced masses rotate synchronously around
the rotary axis Oz with the same angular velocity w and

phase difference X .

Differential equations

The vector of the generalised coordinates, which are
determined by the small vibrations of the discrete mechanical
system, has the type (Fig. 1):

q:<u1 u, w, W2>T- (1)

The Lagrange differential equations of second gender are
used. They have the following matrix form:

0 (0E) (0E)_, OF,
at(aq] (aqj_Q oq @

The kinetic energy of the system is a quadratic form of the
vector generalised velocities and the mass matrix:

E,=050.9".M.q, (3)
M =diag (ml m, m, mz). 4

The potential energy of the deformations is the quadratic
form of the vector of generalised coordinates and the stiffness
matrix:

E,=050.q".K.q, (5)
1 k, 0 0
|k Kz 00 o

The determination of the stiffness matrix is done by the
mathematical dependence:

K=D", ()

where the flexibility matrix has the form:
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|3 C,+C
dn: 1 + 1 2 ’
48.E.1, 4.c,.c,
l,.12 |3
d,=— 2 +—2 4
3.E.l, 3.E.I,
12 ¢, +¢C I, +2.1
+—§. Cl - Z.L , (10)
I c,.c, I, c,
121, I, 1 1+, 1
d,=d, =— S )
16.E.1, 21, ¢, 2l c,

The vector of the generalised non-potential forces is formed
by the inertial forces that arise in the two unbalanced masses.
This vector has the type:

Q:<X1 Xz Y1 Y2>T’ (12)

X, =m,,.e . w.cos(wt), (13)

X, :mZd.ez.mz.cos(m.Hkn), (14)

Y, =m,, ., w2sin(w.t ), (15)

Y, =m,,.e,.wsin(wt+1, ). (16)

The system of differential equations, which describes the
small vibrations of the two concentrated masses recorded in a
matrix form, has the following type:
M.g+K.q=Q . (17)

The upper differential equation system (17) is linear, non-
homogeneous, from the second order and it is composed of
constant coefficients. It could be integrated analytically (lvanov,
2017). But when multiple engineering calculations are
performed with variations of many parameters, it is advisable to
solve it numerically with a suitable program. It can be compiled
on the basis of some powerful mathematical package.

Numerical solution

For the numerical solution of the differential equation
system (17) in the time area, the MatLab ver. 6.1 and Simulink
Toolbox are used.

Eigen frequencies

In order to avoid the dangerous resonance areas, the eigen
frequencies were primarily determined.

This task is related to defining the own numbers of the
matrix A, which has the following structure:

0 I
ALl "

21

Sub-matrices 0=[0],,, and I=diag[1],., are

correspondingly zero and unit matrices.
The eigen circular frequencies , , (k=1,2,3,4), are

derived from the own numbers p, that have the form:

i=/-1.

Initially, a program file "shaft.m" is created. Then this file is
started from the MatLab main command window.

p, =0ti.00,, (19)

Simulink model file
Initially, the differential equations (17) are presented in the
following matrix form:

g=[-M1K o].{‘,q

20
i (20)

}+M1.Q .

A model simulation file "shaft.mdl" is created. This file is
started from the Simullink command window.

Numerical results

In order to avoid dangerous resonance areas, the eigen
frequencies were originally determined.

The calculations are made using the following numerical
parameters:

E=210"Pa, m,, =598 kg, m,, =399 kg,

m,, =2kg, m,, =1kg, ¢,=5.10*N/m,
c,=810*N/m, I,=1,6.10"°m*, 1,=0,810"°m*,
l,=6m,1,=2m, e, =0,08m, e,=0,06 m,

The following values of the eigen circular frequencies are
obtained:

®,=597s", ©,=5997s", 0,=9,147 s,
0, =9147s".
The safe frequency areas of the forced circular frequency

w for avoidance of resonant phenomena are: w<4 s as
wellas w>12s".
Forced circular frequency w =40 s is accepted.

The system of differential equations (20) is integrated with a
variable step by the selected method ode 113 (Adams) and
maximum time duration t =5s.

The calculations are made for thirteen values of the phase
difference A, namely A, =n.n/12 rad,

(n=0,12,..,11,12) .
For each phase difference A, the magnitudes of the
displacement of the two masses m, and m, are determined
using the following formulas:

2 2 2 2
Ain:\’uln-i_wln ’ AZn:\ju2n+W2n .

For the first mass m,, the maximum deviation from the

shaft axis is obtained with a phase difference
Ao =0.n/12 rad , and it has a value A, =0,00164 m .

(21)
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For the second mass m, , the maximum deviation from the
axis is obtained with a phase difference A, =11.7/12 rad,
and it has a value A,,, =0,002027 m .

The Ay =AL()
A, =A,,(t) are shown in Figure 2 and Figure 3,
respectively.

graphs  of  functions and

=1 &3

) F1

H%IplﬁﬁlﬁEI%*‘

Fig. 2. Displacement of the first mass during the integration time
H=1 E3
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Fig. 3. Displacement of the second mass during the integration
time

The prepared model file allows the trajectory traces of each
mass in a horizontal plane parallel to the plane Oxy to be

visualised.

These trajectory traces of the two masses for the same
unfavourable phase differences are shown in Figure 4 and
Figure 5, respectively.
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Fig. 4. Trajectory trace of the first mass in the horizontal plane
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Fig. 5. Trajectory trace of the second mass in the horizontal plane

A study has also been done for the maximum velocities and
the maximum accelerations of the two masses.

For each phase difference A, the velocity v, and
acceleration a,, of the two masses m; u m, are determined

by the formulas:

N = JUuZ +W2 (22)
a,, = U2 +W. = JUz +wW) . (23)
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Fig. 6. Velocity of the first mass during the integration time
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Fig. 7. Velocity of the second mass during the integration time
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For the first mass m,, the maximum velocity is obtained
with a phase difference A, =0.7/12 rad, and it has a value
v,, =0,0233 m/s.
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Fig. 8. A trace of velocity vector peak of the first mass in the
horizontal plane
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Fig. 9. A trace of velocity vector peak of the second mass in the
horizontal plane

For the second mass m,, the maximum velocity is
obtained with a phase difference A, =11.n/12 rad and it
has a value v,,, =0,0185 m/s.
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Fig. 10. Acceleration of the first mass during the integration time
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Fig. 11. Acceleration of the second mass during the integration
time
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Fig. 12. A trace of acceleration vector peak of the first mass in the
horizontal plane
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Fig. 13. A trace of acceleration vector peak of the second mass in
the horizontal plane

The graphs of functions v o =V,,(t) and v, =V, (t)

are shown in Figure 6 and Figure 7, respectively.

The trace of velocity vector peaks of the two masses for the
correspondingly unfavourable mutual positions are shown in
Figure 8 and Figure 9, respectively.
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For the first mass m,, the maximum acceleration is
obtained with a phase difference A, =0.7/12 rad, and it
has a value a,, =0,5606 m/s”.

For the second mass m,, the maximum acceleration is
obtained with a phase difference A, =11.n/12 rad and it
has a value a,,, =0,3236 m/s?.

The graphs of functions a,, =a,,(t) and a,,; =a,,(t)

are shown in Figure 10 and Figure 11, respectively.

The trace of acceleration vector peaks of the two masses
for the correspondingly unfavourable mutual positions are
shown in Figure 12 and Figure 13, respectively.

Conclusion

The main issue is solved.

1. An application program in the area of MatLab ver. 6.1
and in the area of Simulink Toolbox for numerical calculation of
free and forced vibrations of a mechanical system with four
degrees of freedom is compiled and adapted to this task.

2. The eigen frequencies of this mathematical model of
the shaft are determined, and based on these values, a forced
circular frequency is selected which is outside the resonant
danger zone.

3. The maximum values of the displacements, velocities
and accelerations of the two concentrated masses at the
correspondingly the most unfavourable mutual position of the
two unbalanced masses are determined.

4. Al calculated kinematical
illustrated in detail in Figures 2 to13.

5. This study shows the advantages of the numerical
solution compared to the respective analytical solution. These
advantages could be summarised as follows:

- Ability to change many input parameters and calculate
many variants for a relatively short machine time (Stoyanov,
2018; Stoyanov, 2017).

- Ability to optimise input parameters and the final results
using Toolbox Optimisation (Tonchev et al., 2013).

This task provides the basis for further research,
complicating the model with the following additions:

1. To take into account the damping in the system.

2. To take into account the effect of horizontal
kinematical disturbances that could occur in both supports.

3. To take into account the influence of the distributed
mass on the two shaft sections at the bending study.

4. To complicate the dynamical model, taking into
account the twist and total bending of the shaft in the two
mutually perpendicular planes.

The solved task could be used at the construction of
aggregates in the mining industry.

It is also useful for Bachelors, Masters and PhD students
who study the Theory of Mechanisms and Machines and
Vibrations in Techniques (Sergeev et al., 2018).

The article shows a modern numerical study with the
MatLab package (lvanov, 2011). Such studies can also be
performed with other MatLab toolboxes (Marinov et al., 2016),
as well as with other mathematical packages such as MathCAD
(Stoyanov, 2017, Stoyanov, 2017).

characteristics are
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