
Journal of Mining and Geological Sciences, Volume 62, Number 3, 2019 
 

 

19 

 
 
 
 
 
 
VIBRATIONS OF SHAFT CAUSED BY INERTIAL EXCITATIONS 
 
Anastas I. Ivanov 
 
Todor Kableshkov Higher School of Transport, 1574 Sofia; aii2010@abv.bg 

 
ABSTRACT. Small vibrations of a cylindrical shaft caused by inertial excitations are studied in this paper. The shaft is vertically situated. It consists of two sections 
with different cross sections. It is supported by a spherical and a cylindrical joint. The two supporting devices have horizontal elasticity. Between the two supports, and 
also at the upper end of the shaft, rotationally movable concentric masses, which are eccentrically situated towards the shaft axis, are mounted. They rotate with a 
constant angular velocity relative to the rotary axis and they create unfavourable inertial excitations. Due to the elasticity of the shaft, as well as to the elastic 
horizontal supports, small forced vibrations of the two concentric masses are created in planes perpendicular to the rotary axis. The shaft is modelled as a discrete 
mechanical system with four degrees of freedom. Differential equations, describing the small vibrations of the system, are derived. A programme of MatLab and 
Simulink has been compiled and used to integrate numerically derived equations. Calculations have been made for the different unfavourable positions of the 
concentrated masses relative to a plane perpendicular to the shaft rotary axis. All results are illustrated with appropriate graphs. Some important for the practice 
conclusions are presented, which can be used in the design of such shafts.  
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ТРЕПТЕНИЯ НА ВАЛ, ПРЕДИЗВИКАНИ ОТ ИНЕРЦИОННИ СМУЩЕНИЯ 
Анастас И. Иванов 
Висше транспортно училище ”Тодор Каблешков”, 1574 София  
 
РЕЗЮМЕ. В статията се изследват малките трептения на цилиндричен вал, предизвикани от инерционни смущения. Валът е разположен вертикално. 
Състои се от два участъка с различни по размер напречни сечения. Подпрян е със сферична и цилиндрична става. Двете опорни устройства имат 
хоризонтална еластичност. Между тях, и в най-горния край на вала, са монтирани ротационно движещи се спрямо оста му ексцентрично разположени 
концентрирани маси. Те се въртят с постоянна ъглова скорост спрямо ротационната ос и създават неблагоприятни инерционни смущения. Поради 
еластичността на вала, както и поради еластичните в хоризонтално направление опори, се пораждат малки принудени трептения на двете концентрирани 
маси в равнини, перпендикулярни на ротационната ос. Валът е моделиран като дискретна механична система с четири степени на свобода. Изведени са 
диференциалните уравнения, които описват малките трептения на системата. Съставена е програма на MatLab и Simulink, с помощта на която са 
интегрирани числено изведените уравнения. Извършени са изчисления за неблагоприятните взаимни разположения на концентрираните маси спрямо 
равнина перпендикулярна на оста на вала. Всички резултати са онагледени с подходящи графики. Статията завършва с важни за практиката изводи, които 
могат да се използват при проектирането на подобен вид валове. 
 
Ключови думи: Вал, трептения, инерционни смущения, кинематични характеристики 

 
Introduction 
 

Many machines and aggregates use different types of 
shafts. Most often they are examined for torsion and bending 
because their main purpose is to transmit axial moments 
(Sevastakiev et al., 1986). 

In the presented article, the shaft is examined only on a 
generalised bending caused by inertial harmonic excitations. 
Such disturbances are always presented in the rotary machines 
when unbalanced masses are available (Sergeev et al., 2018). 

Harmful vibrations, which are small oscillations with high 
frequencies and relatively small amplitudes, accompany each 
machine aggregate as crushers, mills and others (Hristova, et 
al., 2018). Reducing them to some minimal normative values is 
the most important engineering problem for solving by any 
constructor (Petrović, 2017; Sergeev et al., 2018). 

For example, the three-dimensional vibrations of a machine 
aggregate, solved numerically with a suitable program for this 
purpose, are studied in the paper (Ivanov, 2017). 

One of the most important and basic task, the 
determination of eigen frequencies and eigen forms, is very 

difficult to solve using only analytical solutions, especially for 
the systems with many degrees of freedom, (Ivanov, 2017). 
The engineer needs to make many calculations numerically for 
multiple variants, which are dependent on a number of 
parameters. Only then, the optimisation analysis can be made 
(Cheshankov et al., 2004). 

The above-mentioned problems lead to the compilation of 
the main purpose of this study: to determine the maximum 
values of the basic kinematical characteristics of a vertical shaft 
from the most unfavourable inertial excitation. 

 
Mathematical model 
 

A vertically positioned cylindrical shaft, which has two 
sections, is studied. 

The first section has a length 1l  and bending stiffness

1.IE , and the second section has length 2l  and bending 

stiffness 2.IE , (Fig. 1). 
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The shaft is supported at its lower end by a spherical joint, 
which is equivalent to three simple rod joints. The vertical rod 
joint is assumed to be perfectly rigid. The two mutually 
perpendicular and horizontal rod joints are assumed to be 

ideally elastic with linear stiffness coefficients 1c . 

 
Fig. 1. Dynamical model of the shaft 

 
At the end of the first section and at the beginning of the 

second one, the shaft is supported by a cylindrical joint. It is 
equivalent to two horizontal rod joints, which are assumed to be 

ideally elastic with linear stiffness coefficients 2c . 

In the middle of the first section are centrally located a 

concentrated mass 11m  and an unbalanced mass dm1 , and 

dmmm 1111  . The unbalanced mass dm1  is located at a 

distance 1e   from the shaft axis. 

At the upper end of the shaft are centrally located a 

concentrated mass 22m  and an unbalanced mass dm 2  with 

an eccentricity 2e , and dmmm 2222  . 

The two unbalanced masses rotate synchronously around 
the rotary axis zO  with the same angular velocity   and 

phase difference  . 

 
Differential equations 
 

The vector of the generalised coordinates, which are 
determined by the small vibrations of the discrete mechanical 
system, has the type (Fig. 1): 

 
T

wwuu 2121q  .     (1) 

 
The Lagrange differential equations of second gender are 

used. They have the following matrix form: 
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The kinetic energy of the system is a quadratic form of the 

vector generalised velocities and the mass matrix: 
 

qMq  ...50,0 T

kE   ,      (3) 
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The potential energy of the deformations is the quadratic 

form of the vector of generalised coordinates and the stiffness 
matrix: 
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The determination of the stiffness matrix is done by the 

mathematical dependence: 
 

1DK  ,       (7) 
 

where the flexibility matrix has the form: 
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The vector of the generalised non-potential forces is formed 

by the inertial forces that arise in the two unbalanced masses. 
This vector has the type: 

 
T

YYXX 2121Q  ,   (12) 

 

 temX d .cos... 2

111   ,   (13) 

 

 nd temX  .cos... 2

222  ,   (14) 

 

 temY d .sin... 2

111   ,   (15) 

 

 nd temY  .sin... 2

222  .   (16) 

 
The system of differential equations, which describes the 

small vibrations of the two concentrated masses recorded in a 
matrix form, has the following type: 

 

QqKqM  ..   .    (17) 

 
The upper differential equation system (17) is linear, non-

homogeneous, from the second order and it is composed of 
constant coefficients. It could be integrated analytically (Ivanov, 
2017). But when multiple engineering calculations are 
performed with variations of many parameters, it is advisable to 
solve it numerically with a suitable program. It can be compiled 
on the basis of some powerful mathematical package. 

 
Numerical solution 
 

For the numerical solution of the differential equation 
system (17) in the time area, the MatLab ver. 6.1 and Simulink 
Toolbox are used. 

 
Eigen frequencies 

In order to avoid the dangerous resonance areas, the eigen 
frequencies were primarily determined. 

This task is related to defining the own numbers of the 

matrix A , which has the following structure: 
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Sub-matrices  
44

0


0  and  
44

1


 diagI  are 

correspondingly zero and unit matrices. 

The eigen circular frequencies k ,  4,3,2,1k , are 

derived from the own numbers kp  that have the form: 
 

kk ip  .0 ,       1i  .   (19) 
 

Initially, a program file "shaft.m" is created. Then this file is 
started from the MatLab main command window. 

 
Simulink model file 

Initially, the differential equations (17) are presented in the 
following matrix form: 

 

  QM
q

q
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A model simulation file "shaft.mdl" is created. This file is 

started from the Simullink command window. 
 

Numerical results 
In order to avoid dangerous resonance areas, the eigen 

frequencies were originally determined. 
The calculations are made using the following numerical 

parameters: 

PaE 1110.2 , kgm 59811  , kgm 39922  , 

kgm d 21  , kgm d 12  , mNc /10.5 4

1  , 

mNc /10.8 4

2  , 
46

1 10.6,1 mI  , 
46

2 10.8,0 mI  , 

ml 61  , ml 22  , me 08,01  , me 06,02  , 

The following values of the eigen circular frequencies are 
obtained: 

1

1 997,5  s , 
1

2 997,5  s , 
1

3 147,9  s , 

1

4 147,9  s  . 

The safe frequency areas of the forced circular frequency 

  for avoidance of resonant phenomena are: 14  s  as 

well as 112  s . 

Forced circular frequency 140  s  is accepted. 

The system of differential equations (20) is integrated with a 
variable step by the selected method ode 113 (Adams) and 
maximum time duration st 5 . 

The calculations are made for thirteen values of the phase 

difference n , namely radnn 12/. , 

)12,11,...,2,1,0( n . 

For each phase difference n , the magnitudes of the 

displacement of the two masses 1m  and 2m  are determined 

using the following formulas: 
 

2

1

2

11 nnn wuA   ,       2

2

2

22 nnn wuA   .  (21) 

 

For the first mass 1m , the maximum deviation from the 

shaft axis is obtained with a phase difference 

rad12/.00  , and it has a value mA 00164,010  . 
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For the second mass 2m , the maximum deviation from the 

axis is obtained with a phase difference rad12/.1111  , 

and it has a value mA 002027,0112  . 

The graphs of functions )(0101 tAA   and 

)(112112 tAA   are shown in Figure 2 and Figure 3, 

respectively. 
 

 

Fig. 2. Displacement of the first mass during the integration time 
 

 

Fig. 3. Displacement of the second mass during the integration 
time 

 

The prepared model file allows the trajectory traces of each 
mass in a horizontal plane parallel to the plane yxO  to be 

visualised. 
These trajectory traces of the two masses for the same 

unfavourable phase differences are shown in Figure 4 and 
Figure 5, respectively. 

 

Fig. 4. Trajectory trace of the first mass in the horizontal plane 

 
Fig. 5. Trajectory trace of the second mass in the horizontal plane 

 
A study has also been done for the maximum velocities and 

the maximum accelerations of the two masses. 

For each phase difference n  the velocity nv  and 

acceleration na  of the two masses 1m  и 2m   are determined 

by the formulas: 
 

2

1

2

11 nnn wuv    ,       2
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Fig. 6. Velocity of the first mass during the integration time 

 

 
Fig. 7. Velocity of the second mass during the integration time 
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For the first mass 1m , the maximum velocity is obtained 

with a phase difference rad12/.00  , and it has a value 

./0233,001 smv   
 

 

Fig. 8. A trace of velocity vector peak of the first mass in the 
horizontal plane 

 

 

Fig. 9. A trace of velocity vector peak of the second mass in the 
horizontal plane 

 

For the second mass 2m , the maximum velocity is 

obtained with a phase difference rad12/.1111   and it 

has a value ./0185,0112 smv   

 

 
Fig. 10. Acceleration of the first mass during the integration time 

 
Fig. 11. Acceleration of the second mass during the integration 
time 

 

 
Fig. 12. A trace of acceleration vector peak of the first mass in the 
horizontal plane 

 

 
Fig. 13. A trace of acceleration vector peak of the second mass in 
the horizontal plane 

 

The graphs of functions )(0101 tvv   and )(112112 tvv   

are shown in Figure 6 and Figure 7, respectively. 
The trace of velocity vector peaks of the two masses for the 

correspondingly unfavourable mutual positions are shown in 
Figure 8 and Figure 9, respectively. 
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For the first mass 1m , the maximum acceleration is 

obtained with a phase difference rad12/.00  , and it 

has a value 2

01 /5606,0 sma  . 

For the second mass 2m , the maximum acceleration is 

obtained with a phase difference rad12/.1111   and it 

has a value ./3236,0 2

112 sma   

The graphs of functions )(0101 taa   and )(112112 taa   

are shown in Figure 10 and Figure 11, respectively. 
The trace of acceleration vector peaks of the two masses 

for the correspondingly unfavourable mutual positions are 
shown in Figure 12 and Figure 13, respectively. 

 
Conclusion 
 

The main issue is solved. 
1. An application program in the area of MatLab ver. 6.1 

and in the area of Simulink Toolbox for numerical calculation of 
free and forced vibrations of a mechanical system with four 
degrees of freedom is compiled and adapted to this task. 

2. The eigen frequencies of this mathematical model of 
the shaft are determined, and based on these values, a forced 
circular frequency is selected which is outside the resonant 
danger zone. 

3. The maximum values of the displacements, velocities 
and accelerations of the two concentrated masses at the 
correspondingly the most unfavourable mutual position of the 
two unbalanced masses are determined. 

4. All calculated kinematical characteristics are 
illustrated in detail in Figures 2 to13. 

5. This study shows the advantages of the numerical 
solution compared to the respective analytical solution. These 
advantages could be summarised as follows: 

- Ability to change many input parameters and calculate 
many variants for a relatively short machine time (Stoyanov, 
2018; Stoyanov, 2017). 

- Ability to optimise input parameters and the final results 
using Toolbox Optimisation (Tonchev et al., 2013). 

This task provides the basis for further research, 
complicating the model with the following additions: 

1. To take into account the damping in the system. 
2. To take into account the effect of horizontal 

kinematical disturbances that could occur in both supports. 
3. To take into account the influence of the distributed 

mass on the two shaft sections at the bending study. 
4. To complicate the dynamical model, taking into 

account the twist and total bending of the shaft in the two 
mutually perpendicular planes. 

The solved task could be used at the construction of 
aggregates in the mining industry. 

It is also useful for Bachelors, Masters and PhD students 
who study the Theory of Mechanisms and Machines and 
Vibrations in Techniques (Sergeev et al., 2018). 

The article shows a modern numerical study with the 
MatLab package (Ivanov, 2011). Such studies can also be 
performed with other MatLab toolboxes (Marinov et al., 2016), 
as well as with other mathematical packages such as MathCAD 
(Stoyanov, 2017, Stoyanov, 2017). 
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