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HYPERSPECTRAL REMOTE SENSING IN ENVIRONMENTAL MONITORING: STRESS
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ABSTRACT. Hyperspectral remote sensing offers unique opportunities in the environmental monitoring and sustainable use of natural resources. In this study, a non-
invasive remote sensing technique based on hyperspectral reflectance measurements was applied for the detection of a viral infection (sharka) in an open-field plum
orchard. Changes in the leaf spectral reflectance are a sensitive indicator for the impact of a variety of adverse environmental factors on the plant ecosystems such as
stress, diseases, drought, etc. Spectral data were collected by means of a portable fiber-optics spectrometer in the spectral range of 350-1100 nm. The differences
between the leaf reflectance spectra of healthy and infected with Plum Pox Virus (PPV) trees were appreciated by hyperspectral analyses of the first derivative spectra
for extraction of the red edge position (REP) and red edge symmetry, and of five narrowband vegetation indices (VIs) - Normalized Difference (NDVI), Modified Red
Edge Normalized Difference (MRENDVI), Photochemical Reflectance Index (PRI), Red Green Ratio Index (RGRI), and Structure Insensitive Pigment Index (SIPI), as
indicators of stress and disease symptoms. Statistical analyses (Student’s t-test and Fisher's LSD test) were used to assess the significance of differences between

spectral data of healthy and infected plum leaves. All Vis gave statistically significant differences except for NDVI. Most sensitive to the changes in the physiological
status of plum trees turned out to be MRENDVI.

Key words: hyperspectral remote sensing, spectral reflectance, vegetation indices, stress detection, red edge position.

MOHUTOPWHI HA OKOJNTHATA CPEQA YPE3 XMNEPCNEKTPANHM ANCTAHUWOHHU U3CNEOBAHUA: OTKPUBAHE HA
CTPEC B PACTUTENHA EKOCUCTEMA

Kanunka Benuykoea, [Jopa Kpexoea?

"MunHo-2eonoxku yHugepcumem ,Ce. UeaH Puncku®, 1700 Cogpusi

2WHemumym 3a KOCMUYeCKU u3ced8aHus U mexHonoauu — boreapcka akademus Ha Haykume, 1113 Cogpus

PE3IOME. XvnepcnekTpanHuTe ANCTAHLVMOHHI U3CTe[BaHNS NpeanaraT yHUKanH Bb3MOXHOCTM 3@ MOHUTOpUPaHe Ha OKonHaTa cpefa W 3a YCTON4MBO ynpasrexne
Ha NpUpOoaH1TE pecypcu. B ToBa M3cneaBaHe e NpunoxeHa HeMHBa3uBHa TEXHWUKA 3a AUCTAHLMOHHM U3CNeaBaHWsl, OCHOBALLA CE Ha XMMEPCNEKTpanHu M3MepBaHus
Ha OTpaseHa pajmauus, 3a Aa Ce OLEHM HamWM4MEeTO Ha BUMPYCHA MH(EKLUMS B CMIMBOBA OBOWHA rpaguHa. [pomeHnTe B oTpaseHata OT nucTata pagnaums ca
UYBCTBUTENEH WHAWKATOP 3a Bb3AENCTBMETO Ha Pa3nuyHM (hakTopi Ha OKonHaTa cpeda kato cTpec, 6onecty, cywa 1 Ap. BbpXy pacTUTENHUTE eKocucTemu
CnekTpanHuTe AaHHW ca perucTpupaHqy ¢ NopTaTMBeH CrieKTPOMETbP B CnekTpanHns AnanasoH 350-1100 HM. PasnukuTe Mexay CnekTpuTe Ha OTpaxeHue Ha nuctata
Ha 3ppaBu 1 3apasehm ¢ Plum Pox Virus (PPV) abpBeTa 65xa OLEHeHM Ypes X1nepenekTpanHu aHanuan Ha CNekTpUTe Ha MbpBUTe MPOU3BOAHN 3a M3BMMYaAHE Ha
MOMOXEHNETO Y CUMETPUSATA Ha YePBEHIS PbO 1 Ha MET TECHOMEHTOBY BEreTaLMOHHM MHAEKCA — MHAEKC Ha HopMupaHaTa pasnuka (NDVI), uHaekce Ha Moguduumpaxa
HopMMpaHa pasnuka Ha yepsenus pbb (MRENDVI), doToxummyeH nHoekc Ha otpaseHata paguauus (PRI), nHoekc Ha oTHolweHueTo YepBeHo/seneHo (RGRI) u
He4yBCTBUTENEH KbM CTPYKTypaTa nurMeHTeH uraeke (SIPI). Mpunoxenu ca cratuctuyeckn aHammam (T-Tect Ha CTIOABHT U TecT Ha Puwwep 3a Han-Manka 3Haumma
pasnuka), 3a Ja Ce OLEHM 3HAYMMOCTTa Ha PasnnKiTe MEXZy CneKTpanHuTe AaHHW Ha 3paBu U 3apaseHn crmBoBu nucta.C uskntovenme Ha NDVI, Bcuuku
BEreTaLUMOHHN MHEEKCH [aBaT CTaTUCTUYECKU 3HAYMMM Pa3nuku. Haii-4yBCTBUTENEH KbM NPOMEHIUTE BbB (DU3MONOTMYHOTO CLCTOSIHME Ha CTIMBOBUTE AbpBETa Ce
okasa MRENDVI.

KniouoBu AYMU: XUNepcnekTpanHn AUCTaHUMOHHN U3cneaBaHnua, 0TpaseHa paauauuna, BeretauMoHHN NHAEKCH, CTpecC, NONoXeHNe Ha YepBeHUa p'b6

Introduction land ecological environment. It is also the major object of earth
observation with remote sensing techniques. The ecological
Environmental SUStainabi“ty is one of the blggest issues processes related to p|ant material energy exchange’ eg.
faced by mankind at present. The increasing human population, photosynthesis, transpiration, respiration, and primary
increment in per capita consumption, as well as the rapid growth productivity, are in close connection with the biophysical and
of industrialisation, lead not only to overexploitation of natural biochemical parameters of the vegetation (Zhou et al., 2020).
resources but also to the risk Of contamination with toxic Forest ecosystems fulfil a whole host of ecosystem
chemicals leading to the degradation of the environment functions that are essential for life on our planet. However, an
becoming greater and greater (Li et al., 2017). unprecedented level of anthropogenic influences is reducing the
Plant growth and health have a considerable effect on the resilience and stability of our forests and orchards, as well as
environment and climate. Vegetation, which covers 70% of the their ecosystem functions. That is why environmental monitoring
global land area, is an essential indicator of the change of the is of great significance for natural resource protection and
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management. Today, an increasing amount of forest and
orchard health data is available from monitoring programs
(McRoberts et al., 2012; Traub et al., 2017), from experimental
studies of forest ecosystems (Henttonen et al., 2017), as well as
from remote sensing data.

In recent years, sensors and remote sensing (RS)
techniques have improved significantly the capability to gather
information about natural resources and the environment. Many
types of sensors including photographs, airborne multi-spectral
scanners, satellite imagery, and ground-based spectrometer
measurements  collect electromagnetic information. RS
technologies are capable of providing detailed spectral (tone,
colour, and spectral signature), spatial (size, shape, and
orientation), and temporal information on terrestrial ecosystems.

The development of hyperspectral sensors, collecting data
in hundreds of narrow spectral bands simultaneously, allows
accurately studying terrestrial vegetation on regional and global
scales. The RS technique based on hyperspectral
measurements of leaf reflectance in the optical portion of the
electromagnetic spectrum makes it possible to monitor the
amount and condition of photosynthetic activity of green
vegetation. Changes in the leaf spectral reflectance are a
sensitive indicator for the impact of a variety of adverse
environmental factors (natural and human-induced) on the plant
ecosystems causing stress, diseases, drought, etc. (Krezhova
etal., 2017; Gold et al., 2020). Changes in reflectance properties
of plants are a consequence of changes in their biophysical and
biochemical properties (Mutanga and Skidmore, 2007).

There has been a significant increase in the scientific
literature in recent years focusing on detecting stress in plants
using hyperspectral data analysis (Ray et al., 2010; Velichkova
and Krezhova, 2017). Plant disease detection is a major activity
in the management of crop plants in both agriculture and
horticulture. In particular, early detection of stress and diseases
is of great benefit to farmers and growers as it enables earlier
interventions to help mitigate crop loss and its quality. There are
various techniques available to analyse the data to detect biotic
and abiotic stress in plants.

Over time and through many scientific studies, RS experts
have come to understand how combinations of the measured
reflectance at two or more wavelengths, known as Vegetation
Indices (VIs), reveal specific characteristics of the vegetation.
Significant wavelengths combined together can indicate the
chlorophyll (Chl) content, health, or disease status occurring
within a specific species. Vls are quite simple and effective
algorithms for quantitative and qualitative evaluations of
vegetation cover, vigour, growth dynamics, and senescence.
The quantity of Vls is increasing every year. Some of them are
more general in nature but others are used to reveal the general
health of the vegetation.

The aim of this study is to assess the efficiency and
sensitivity of two different approaches for hyperspectral data
analysis of leaf reflectance data for the detection of a viral
infection (Plum pox, also known as sharka) in a plum orchard.
Analyses have been conducted on the first derivatives of the
reflectance spectra for the extraction of the red edge position
(REP) and red edge symmetry (RES), as well as on five
narrowband VIs, selected as indicators of stress and disease
symptoms. Statistical analyses (Student’s t-test and Fisher's
LSD test) were used to assess the significance of differences
between spectral data of healthy (control) and infected plum
leaves.
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Materials and Methods

Plant material

Sharka caused by the Plum pox virus (PPV) is one of the
most harmful diseases affecting stone (Prunus) fruit crops.
Based on the scientific and economic importance, PPV is
considered as one of the top ten plant viruses (Scholthof et al.,
2011). The efficient transmission of PPV by many aphid species
in a non-persistent manner, the wide range of isolates differing
in their biological, serological, and molecular properties, as well
as the rare presence of resistance genes within Prunus genes
make it very difficult to implement control measures (Petrov,
2014).

The plum trees, cultivar Mirabelle, were grown in an open-
field plum orchard in the Black Sea region near the town of
Burgas. This cultivar is widespread in Bulgaria. Up to 10
branches from the different parts of the top of the crowns of six
plum trees were subjected to analysis. Leaves without visual
symptoms of sharka and damage (normal turgor and without
signs of chlorosis) were collected from the branches. After the
check with serological analyses, the leaves were divided into
two groups (healthy, without of presence of PPV, and infected
with PPV). Leaf samples were stored in plastic bags and kept
cool for the analysis.

Spectral reflectance measurements

The reflected radiation from healthy leaves and leaves
infected with PVY plum was collected by means of a portable
fiber-optics spectrometer (Ocean Optics, USA) in the VIS and
NIR spectral ranges (350-1100 nm) in 2048 narrow spectral
bands with a step of 0.3 nm and at a spectral resolution of 1.5
nm (product/ocean-optics). The data was analysed in the
spectral range 450-850 nm at 1170 spectral bands where more
significant differences between the reflectance spectra of
healthy and infected plants have appeared. Fresh detached
leaves (about 30) from each leaf group were measured on the
same day in a laboratory on an experimental setup. The light
source was a halogen lamp providing homogeneous illumination
of the leaf surfaces. The reflectance spectra (spectral
reflectance characteristics) were determined as a ratio between
the radiation reflected from the leaves and that reflected from
the diffuse reflectance standard (BaSOa). Specialised software
was used for data acquisition and data processing.

Hyperspectral data analysis

Leaf spectral reflectance. Green vegetation species all have
unique spectral features, mainly because of the chlorophyll and
carotenoid, and other pigments and water content. Chl content
is one of the most important biochemical materials, closely
related to the photosynthetic process and with protective activity
against a variety of degenerative diseases (Korus, 2013). Chl
concentration is the main parameter that characterises plant
growth conditions and health. Chl generally decreases under
stress and changes in its content may thus indicate effects of
disease and nutritional and environmental stresses in plants
(Sonobe and Wang, 2017).

It is known that the reflectance from green vegetation is
characterised by the low reflectance over the blue (400-500 nm)
and red (620-700 nm) spectral ranges due to strong absorption
by Chl and carotenoids in the blue wavelengths and Chl a in the
red wavelengths. The abrupt change in reflectance between 680
and 750 nm, called the red edge, is caused by the combined
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effects of increasing Chl absorption at wavelengths beyond 700
nm and internal cell structure. The leaf internal structure with
large numbers of refractive discontinuities between cell walls
and intercellular air spaces scatters incident radiation and allows
a large proportion to pass back through the upper epidermis to
be observed as reflected radiation (Blackburn, 2006).

Red edge position and first derivative analyses. The
inflection point of the slope (red edge) on the reflectance
spectrum (680-760 nm) is known as the red edge position
(REP) and can be used for studying the Chl content or plant
growth status (Horler et al., 1983; Boochs et al. 1990) The
increase in Chl concentration results in a shift of REP towards
longer wavelengths (Gates et al., 1965). Shifts of the REP to
longer or shorter wavelengths have already been related to
changes in the chemical and morphological plant status (Peng
etal., 2011).

A first derivative (FD) spectrum displays the variations with
wavelengths in the original reflectance spectrum. It has been
suggested that spectral derivatives have important advantages
over spectral reflectance, such as their ability to reduce
variability due to changes in illumination or soilllitter reflectance
(Elvidge and Chen, 1995).

The FD of reflectance spectrum has been used to detect
specific points such as the green peak and the REP. The main
method for defining the REP has been to identify the maximum
amplitude of the peak of the FD in the region of the red edge.
Horler et al. (1983) have applied derivative analysis techniques
on the detection of the red edge shift and have identified two
peaks in the derivatives. They attributed the first peak at around
700 nm to the Chl content in plant leaves, while the second one
at around 725 nm was attributed rather to the leaf scattering
properties than to the Chl content. A shift of the peaks to longer
wavelengths was shown to be due to an increase in Chl
concentration and leaf stacking, respectively.

Several other studies have revealed the existence of this
double-peak feature in the first derivative of continuous spectra
with different plants. Boochs et al. (1990) found the peaks at 703
and 735 nm; Smith et al. (2004) identified two peaks in the
canopy spectra of grass near 702 and 725 nm.

Development of vegetation indices. The narrowband
greenness VIs are designed to provide a measure of the overall
amount and quality of photosynthetic material in
vegetation, which is essential for understanding the
physiological status of vegetation. Reflectance in particular
wavelengths is selected for the calculation of ratios or VIs. Most

hyperspectral Vis for assessing Chl content generally use the
wavelength domain ranging from 400 to 860 nm on either
original reflectance, or derivative spectra.

The light use efficiency Vls provide a measure of the
efficiency with which vegetation can use incident light for
photosynthesis. Light use efficiency is highly related to carbon
uptake efficiency and vegetative growth rates, and the
physiological condition of plants.

The narrowband Vs used in this study for the detection of
PPV infection on plum trees and details of these indices are
presented in Table 1. The first two Vls are greenness and the
next three are light use efficiency Vis.

The Normalised Difference Vegetation Index (NDVI) is a
simple, but effective VI for quantifying green vegetation. The
NDVI normalises green leaf scattering in the NIR wavelengths
and Chl absorption in the red wavelengths. The value range of
an NDVI is -1 to 1, whereas healthy vegetation generally falls
between values of 0.2 to 0.8.

MRENDVI is a modification of the Red Edge NDVI705 that
corrects for leaf specular reflection. Applications include
precision agriculture, forest monitoring, and vegetation stress
detection. The value of this index ranges from -1 to 1. The
common range for green vegetation is 0.2 t0 0.7.

The Photochemical Reflectance Index (PRI) is sensitive to
changes in carotenoid pigments. Applications include vegetation
health in evergreen shrublands, forests, and agricultural crops
prior to senescence. The value of this index ranges from -1 to 1.
The common range for green vegetation is -0.2 to 0.2.

Structure Insensitive Pigment Index (SIPI) applications
include vegetation health monitoring, plant physiological stress
detection, and crop production and yield analysis. An Increase
in SIPI is thought to indicate increased canopy stress
(carotenoid pigment). The value of this VI ranges from 0 to 2.
The common range for green vegetation is 0.8 to 1.8.

The Red Green Ratio Index (RGRI) is an indicator of leaf
production and stress. Applications include plant growth cycle
(phenology) studies, canopy stress detection, and crop yield
prediction. The value of this index ranges from 0.1 to more than
8. The common range for green vegetation is 0.7 to 3.

A new red edge parameter, defined as red edge symmetry
(RES), was calculated and analysed. Compared to the
commonly used red edge parameters (REP, red edge
amplitude, and red edge area), RES was a better predictor of
the leaf Chl content. Furthermore, RES was easily calculated
using the reflectance of red edge boundary wavebands at 675
and 755 nm (Re7s and R7ss) and reflectance of red edge cente

Table 1. Calculated narrowband vegetation indices for detection of PPV infection on plum trees

Vegetation Index (V1)

Computation

Reference

NDVI (Normalized Difference) (
MPENDVI (Modified Red Edge

Normalized Difference) (
PRI (Photochemical Reflectance Index) | (Rss1 -
SIPI (Structure Insensitive Pigment (

Index)
699 599

SR /SR

i=600 i=500

RGRI (Red Green Ratio Index)
RES (Ped Edge Cymmetry)

RNIR = Rred)/(RNIR + Rred)

R7s0 — Rros)/(R7s0 + R7os — 2Ras0)
Rs70)/(Rs31 + Rs7o)

Reoo — Rass)/(Reoo + Ra4s)

(R718 — Re75)/(R7s5 — Rets).

Rouse et al., 1973

Datt, 1999, Sims and Gamon, 2002
Pefiuelas et al., 1995; Gamon et al., 1997
Pefiuelas et al., 1995

Gamon and Surfus, 1999
Chang-Hua et al., 2010

wavelength at 718 nm (Rs), with the equation (Chang-Hua et
al., 2010) given in Table 1.
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Data processing. All data were processed using the Microsoft
Excel and the Origin Pro software. The spectra collected from
the healthy and infected plum leaves were first cropped in the
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spectral range of 450 to 850 nm because this range is most
informative for green vegetation. Secondly, the raw spectra
were converted to reflectance spectra using the ViewSpec Pro
version 6.2.0 software (ASD Inc., Boulder, CO, USA). These
reflectance spectra were then subjected to a Savitzky-Golay
filtering method (Savitzky and Golay, 1964) to reduce
instrumental noise. The filtered reflectance spectra were used
to compute the first derivative of the mean reflectance spectra
that represents the signal change between two adjacent
wavelengths.

Statistical analyses were carried out by means of the
Statistica 8 software. Fisher's F-test, Student's t-test and
Fisher’s least significant difference test (Fisher's LSD test) were
applied. Fisher's F-test was performed to determine the ratio
between the variances of the compared data sets (30
reflectance spectra of healthy, control leaves and 28 from
infected leaves) at a level of significance 0.05. The Student’s t-
test was applied to assess the statistical significance of the
differences (ptstat) between values of calculated Vs for healthy
and infected leaves at a level of significance 0.05 using equal or
unequal variances (o), determined from the F-test. The least
significant difference for each VI was compared with the
differences between its mean values of control (xc) and infected
(xepv) plants. If the difference (xc- xepv) > LSD, then it could be
accepted that the two mean values compared were different at
significance level pesat and it could be concluded that this VI
could be used for the detection of a PPV infection.

Results and discussion

The red edge shift of the reflectance spectra and the shape
and maximum of the red peak (REP) of the FD curves have been
analysed. Because the data analyses are focused on the red,
red edge, and NIR ranges of the electromagnetic spectrum, both
the reflectance and first-order derivative spectra were cropped
to the 680 to 780 nm. The averaged spectral reflectance
characteristics from all 30 measurements of control and 28 from
infected plum leaves are shown in Fig.1. Differences between
the two curves have appeared in the spectral range of 690 to
780 nm and it is seen that this part of the PPV spectrum is shifted
toward the shorter wavelengths.

704

60 4

= = PPV L
e CoNLtrol .
50
=
8 404
i
o
2
E:G 304
204

720 740 760 780

A, nm

700

Fig. 1. Spectral reflectance of healthy (control) leaves and leaves
infected with PPV in the red and red edge region
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A high-order curve fitting technique, such as third-order
polynomials, according to Savitzky and Golay (1964), was
applied for smoothing the FDs. The FDs of the reflectance
spectra in the spectral range 660-780 nm are shown in Fig.2. It
is observed that the shapes of the derivatives have a bi-modal
structure. The maximum FD values of infected leaves have
increased and the red peak is shifted toward the shorter
wavelengths. The maximum FD values of control leaves are
around 705 -720 nm, whereas for the infected leaves, they are
around 690 to 705 nm. Their amplitudes are 1.18 and 1.27,
respectively.

For more detailed analyses, deconvolution of the first
derivative spectra on their two components was applied using
the Multiple Peak Fit tool, available in the OriginPro software.
The deconvolution of the FDs was performed with two Gaussian
functions positioned in the regions around 690 - 705 nm for
infected leaves and 705 - 720 nm for control leaves. The fitting
operations end with Fit converged. The obtained coefficients of
determination are: R2 = 0.996 for the control leaves and R2 =
0.993 for the infected leaves. The deconvolution of the FD
spectra for control and infected leaves in the spectral range of
670 - 770 nm is demonstrated in Fig. 3 and fig. 4, respectively.
The first peaks around 700 nm were attributed to the Chl content
in leaves, the second peaks around 720 nm were attributed to
the effect on leaf scattering properties and cell structures.

The maximum values of first and second peaks for control
and infected leaves are 0.486 and 1.108, and 0.676 and 1.071
respectively. The corresponding wavelengths are 702.4 nm and
718.9 nm for the control group and 700.6 nm and 717.3 nm for
the infected group. The amplitude of the first peak of FD for the
infected group increases because of a decrease in the Chl
content in the leaves and an increase in the reflectance in the
red range. The amplitude of the second peak is slightly reduced
owing to a disturbance of leaf structure, which contributes to the
stronger reflection in the NIR due to light scattering in the
internal structures of the leaves. A shift toward the shorter
wavelengths for the two peaks of FD of infected leaves in
comparison with control is observed. That is an indicator of the
presence of changes in the physiological condition of the leaves.

Narrowband VIs were calculated using the mean values of
the reflectance spectra of control and PPV infected leaves in the
spectral range of 450 to 850 nm.

= = PPV
=== Control

First derivative of reflectance

720 740 760 780

A, nm

660 680 700
Fig. 2. First derivative spectra of control leaves and leaves infected
with PPV: REP. = 709.94 nm, REPepy = 705.58 nm



lroduwHuk Ha MY ,Ce. Mean Puncku®, Tom 64/2021 / Annual of the University of Mining and Geology “St. Ivan Rilski”, Vol. 64/2021

e CoONtrol
1,=702.4 nm
1,=718.9 nm

0.8

0.6

0.4+

First derivative of reflectance

0.2

0.0

720 740 760

A, nm

660 700

Fig. 3. Deconvolution of the first derivative spectrum of
healthy (control) plum leaves

The calculated values of Vls and the results from the applied
statistical analyses, Student’s t-test, and Fisher's LSD test are
shown in Table 2. The difference between the mean values of
Vls for both types of leaves is statistically significant for all Vls
according to Student's t-test with the exception of NDVI. The
values of NDVI are very close (0.815 and 0.812) and this result
correlates with the early degree of the PPV infection, i.e. the
leaves are with similar “greenness”. The MRENDVI and light use
efficiency VIs (PRI, SIPI, and RGRI) are sensitive to the

780

— PPV
%,=700.6 nm
A,=717.3 nm

o
(=2}
1

First derivative of reflectance

0.0
660

720 740 760 780

A, Nm

680 700
Fig. 4. Deconvolution of first derivative spectrum of infected
plum leaves

infection. Also, statistically significant are the differences of red
edge symmetry (RES) for healthy and infected leaves that
indicate the changes in the size of the red peak of FD.

The Fisher's LSD test shows that the indices MRENDVI,
RES, and SIPI are sensitive to the infection. This result is a
consequence of their purpose and main applications (vegetation
health monitoring and plant physiological stress detection). The
index MRENDV!I yields the best results.

Table 2. Statistical results: mean values of control and PPV infected plants, F- values, level of statistical significance (pr.stat) and
conclusion obtained by F-test (Feit= 4.073), t-values, level of statistical significance (pestat), critical values of t (te), least significant
difference (LSD), and difference between mean values of both type of plants

Vi

PPV

F

|Xc - XPPVl

Control PF-stat o1/ o2 t Pt-stat terit LSD
NDVI 0.815 | 0.812 | 1.111 | 0.807,ns o1=o2 | -0.312 | 0.756, ns 2.018 | 0.0206 0.0032
PRI 0.028 | 0.020 | 2.056 | 0.110,ns o1=o2 | -3.301 | 0.0020, ** 2.018 | 0.0052 0.0085
SIPI 1.017 | 1.024 | 3.189 | 0.012,* oc1=0cy | 5474 | 2.3x106,** | 2.018 | 0.0026 0.0069
MRENDVI | 0.542 | 0.474 | 17.080 | 2.5x108,** | 51202 | -7.743 | 1.3x10°,** | 2.060 | 0.0175 0.0682
RGRI 0.823 | 0.769 | 1.933 | 0.136, ns o1z0o | -4.905 | 2.5x105, ** | 2.028 | 0.0234 0.0543
RES 0619 | 0.680 | 13.028 | 2.8x107,*** | 5y =02 | 8.747 | 1.6x109, ** | 2.057 | 0.0138 0.0607

ns — no statistical significance; * - p<0.05; ** - p<0.01; *** - p<0.005.

Conclusions

Hyperspectral leaf reflectance measurements were used for
biotic stress detection (PPV viral infection in an early stage) in a
plum orchard. This is a non-invasive process where the plum
leaves are scanned to collect high-resolution data. First
derivatives and mathematical transformations (VIs) of the
original spectral reflectance were used for interpreting the health
and physiological status of the plum trees. Many factors should
be taken into consideration for the efficient application of the
vegetation indices in the environmental research. Some of the
VIs are more general in nature (NDVI, MRENDVI), whereas
several others combining significant wavelengths together can
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577/17.08.2018 and supported by the Ministry of Education and
Science (MES) of Bulgaria (Agreement Ne D01-322/18.12.2019).

23

indicate the health or disease status occurring within a specific
species (PRI, SIPI, and RGRI). FD analyses and REP extraction
procedure were performed through deconvolution of the red
peak of FDs. A shift toward the lower wavelengths (about 5 nm)
was established for the FD of infected leaves, which is an
indicator for the presence of an infection in plum leaves.
MRENDVI has turned out to be most sensitive to the changes in
the physiological status of plum trees. This study has
demonstrated the potential of hyperspectral reflectance data for
stress detection in plants.
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