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DETERMINATION OF KINEMATIC CHARACTERISTICS OF THE COMPLEX MOTION OF A
PARTICLE BY MATHCAD
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ABSTRACT: The current problem considers the complex motion of a point M on the surface of a circular disk such as the latter performs a plane motion. The disc
rolls without sliding on a horizontal straight line. The problem is solved graphically for a given time interval. The part of the trajectory of the point M is shown. The
values of the transfer, relative and absolute velocities are graphically shown. The same is done for the transfer, relative, Coriolis and absolute accelerations, as well
as for their components. The above mentioned kinematic characteristics are determined for the same time interval. The problem is solved using the MathCAD
application. In this way the complexity of the graphical solution by hand is overcome.
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ONPEAENAHE HA KWHEMATUYHWUTE XAPAKTEPUCTWUKN HA CNOXXHOTO ABMXEHME HA TOYKA C MATHCAD
AceH CmosiHoe!, lOnusiHa Sleopoea?

" MuHHo—2eomnoxku yHusepcumem ,Cs. MeaH Puncku”, 1700 Cogbust
2 XumukomexHosmoau4eH U memanypaudeH yHugepcumem, 1756 Cogpusi

PE3IOME: 3agayata pasrnexza CroxHOTO ABIKEHUE HA TOYka M BbpXy NOBBPXHOCTTA Ha KPbIbMl AWCK, KATO NOCNEAHUST U3BbPLUBA PABHUHHO BWXEH ve. [JUckbT
ce TbpKans 6e3 nbaraHe No XOPWU3OHTaNHa Npaea NuHKs. 3agavarta ce peluasa rpaduyHo 3a AadeH UHTepBan ot Bpeme. MokasaHa e yacTTa OT TpaekTopusiTa Ha
Touka M. CTOMHOCTUTE Ha NpeHOCcHaTa, OTHOCUTENHaTa W aBCoNoTHATa CKOPOCTY Ca MPeACTaBeHu rpachnyHo. ChLOTO Ce Npasy 3a MPEHOCHOTO, OTHOCUTENHOTO,
KOPMONMCOBOTO U aBCONMIOTHOTO YCKOPEHUS, KaKTO 1 3a TEXHWUTE KOMMOHEHTU. [M0o-Tope CroMeHaTUTe KMHEMaTUYHM XapakTepUCTUKW Ce OMPeensT 3a Chluys
BPEMeBM MHTepBar. 3ajjayata ce peluasa ¢ NoMoLLTa Ha npunoxeHreTo MathCAD. Mo Tosu HauMH Ce MPEOaoNABa CIOKHOCTTA Ha rpadMyHOTO PELUEHUE Ha Pbka.

KnioyoBu gymu: matepuanta Touka, ABWKEHME, CKOPOCT, yckopeHue, MathCAD

Introduction X, (1) = p[O(1)].cos[O()];
t) = p[&(t)].sin[6(D)];
It is well known that there are difficulties in the ‘manual You (—)O' ALE) <inlo)]
determination of the 3D-temporal characteristics of a material Lm =5
particle performing complex motion for a certain time interval. where - p[A(t)] =7 +1,7.sin(2,5.0(t))* ,cm ;
They arise from the graphical nature of the solution itself, as (t) = [x.(L+cos(z1)], rad .

well as from possible errors caused by the complexity of the Do )
resulting expressions due to the twofold differentiation. Similar The disk lies in the plane Ox, y, and rolls on & horizontal
results are published by different authors (Doev and Doronin, line without slipping (Fig. 1). The position of the disk center -
2016; Bertyaev, 2005; Velichenko, 1988; Gurskyi, 2003; Horn point C(Xoc, Yo Zoc ) is determined according to the law:
and Johnson, 2012, Lucko and Kavalchuk, 2018; etc.). In the X.. = s(t) = RA,cm;
means of the above mentioned the present study improves and oc A
complements the solution of this problem. Yoc =0

Zoe =0;
where - 1 = 0,5t +t,rad .

In the plane of the disc lie the following four reference
(coordinate) systems - Ox,Y,Z,, Cxy, CXV,, AX,Y,:

1) The first of them Ox,y,z, is global - conditionally
motionless;

Formulation of the problem

The material particle M (X, (t), Yo (t), Z,, ) moves
on the surface of a round disk "T" with a radius R=25cm
according to the law:
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Fig. 1. Calculation scheme

2) The second Cxyz is local and it is connected to the
disk in a point C . It moves translationally. Its coordinate axes
are parallel to the axes Ox,Y,Z,;

3) The third coordinate system Cx,Yy,z, is a local and it is
rigidly connected to the disk. It rotates around the axis Cz,

according to the law ¢(t) =%t),rad . The angle ¢(t) is

accounted from an axis Cx ;
4) The fourth reference system AX,y,z, is a local with an

arbitrary point A (x, =8cm,y, =4cm,z, =0). ltis rotated

R:=25 At)i= 5+t

-s(1)
R

P(t) =

A= (x1A yIA)Y 0(1) = (1 + cos(m-t)  p(1) := 7 + 1.7-sin(2.5-0(1))

around the axis Az, atanangle a = % rad counted by an

axis Cx, in counterclockwise direction.

In the global coordinate system it is necessary to
determine the kinematical characteristics of the point M :

A) For the moment t, =2s:

o The transfer, relative and absolute point velocity;
e The transfer, relative, Coriolis and absolute point
acceleration.
B) The trajectory of the point for the time interval [0, 6] ;
C) For the same time interval, in a graphical form - the
components and modules of:
o The transfer, relative and absolute velocity of the point;
e The transfer, relative, Coriolis and absolute
acceleration of the point.

Solution of the problem by MathCAD package

The calculation and graphical visualization are performed by
using the MathCAD package.

The angle « is accounted in a positive direction, i.e. in
counterclockwise direction.

At the rolling of the disc the angle ¢(t) changes in the

negative direction.

The analytical expressions for all velocities and accelerations
are too long and they are not shown in Fig. 2.a. and Fig. 2.b.
All unknown quantities as well as their modules are determined
for the time moment t, =25s.

s(t):= R-X(1) xOC(1) := s(t) yOC(t) := 0

T s(t)
(xzz? =2 2:=6 xlA:=8 ylA:=4 1OC(t):= 0

2

X2ZM(1) := p(t)-cos(O(t)) y2M(t) == p(t)-sin(O(t))  r2M(1) := (x2M(t) y2M(l))'I-

cos(a)  sin(o)

Sz1(o) = (

—sin(a) cos(o)

fIMy(0) = rIM(), rIM(0):= (M) TIMy()" S/,xp(l):z(

j fIM() = A + Sz1(e) -2M()  rIMx(1) = rIM(D),

cos(p(t)) sin(ap(l))]
=sin(p(1)) cos(g(t))

TOM(1) := 1OC(1) + Sz() TIM(1)  XOM(1) := TOM(1), YOM(1) := tOM(1),

TOM(1):= (XOM(1) yOM(1))'  VIM(D) :=

we(t) := L:—(ﬂp(l)) vOM(1) := i:-|()M(l) vIMx(t) := vIM(l)“
dt dt

0

VIM(D) = (vIMx() vIMy(®)" K::(l

VOMe(t) = vOC(t) + we(t)-K-Szp(t) -r1M(1)

d

1l'l M(t) vOC(t) := —rOC(1)
dt 1

at

vIMy(t) := le(l)1

-1
j vOMex(t) := v()Mc(l)0 vOMey(t) := v()Mc(l)l
0

vOMe(t) := (vOMex(1) v()Mcy(l))vl}

vOMIr(t) := S/«p(l)‘l.-le(l) vOMrx(t) := v()Mr(l)() vOMry(t) = \/()Mr(l)I

VOME(1) == (VOMIX(t) vOMry(t))" vOMe(t) = vOC(t) +~L:—S/ap(l)~rlM(l) + Szp(t) - vIM(Y)
dt

vOM(1):= vOMe(t) + vOMr(t)

VOMX(1) = VOM(1),)

vOMy(t) := v()M(l)l

Fig. 2.a. Analytical expressions for determining the kinematics characteristics of point M
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7
n2M(tl) = B
-1.714 x 10

84.928
15| I2Man] =7 OM(th) =

G

[roM(t1)| = 85.077
5.036

13.663 59.891
rIM(tl) = - [rIM(t)] = 15.891 @(tl) = -4 we(tl) =3 vOMe(tl) =

-3859x% 10

-45.216

15
[VOMe(t1)] = 75.043 VOM(tl) = [voMr(th)| = 1692 x 107
-1.648 x 10~
59.891
VOM(t) = [voM(tn)| = 75.043
45216

e(t)= j—we(t) aOC(t) = %VOC(I) aOMe(t) := aOC(t) + [5(1)1( + (we(t)K)ZJ-rOM(I)
t t

aOMex(t) := aOMc(t)0 aOMey(t) := aOMe(l)l aOMe(t):= (aOMex(t) aOMey(t) )vl_

alM(t) = %le(t) aOM(1) := Szp(1)'-alM(1) aOMIx(t) := aOMx(t), aOMry(t) := aOMi(t),
t

aOMr(t) == (aOMr(t)0 aOMr(1), )T aOMC(t) = 2-wc(l)-K-SZLp(t)T-le(t) aOMCx() := aOMC(1),
aOMCy() := aOMC(1), aOMC(t):= (aOMCx(t) aOMCy(t))! aOM(t) := aOMe(t) + aOMr(t) + aOMC(t)

aOMXx(t) = aOM(l)O aOMy(t) := a()M(l)1 aOM(t) := (aOMx(t) aOMy(t) )T
g(tl) =1 — 14
—744.389 495 9.885x 10 —694.889
aOMe(tl) = aOMr(tl) = aOMC(tl) = aOM(tl) =
39.601 211.324 — 1 250.925
-2315x 10

|aOMe(t])| = 745442 |aOMr(tD)| = 217.044 [aOMC(tD)| = 1.015x 107 % [aOM(tD)| = 738.806

Fig. 2.b. Certain values for the positions and velocities of point M as well as analytical expressions for its accelerations and their

values for the moment t, = 2s

The position of a particle M for the moment t, =25 in
the space of the local coordinate system Ax,y,z, is shown in

Fig. 3.a. The trajectory of the point for its relative motion is also
described.

The same figure shows also the position of the point M
for the moment t, = 2s on the trajectory described by it in the

space of the global coordinate system OX,Y,Z, .

The dependences between the projections of velocities
and accelerations on the global axes and time are graphically
presented on Fig. 3.a., 3.b. and 3.c. In addition, on the same
figures are shown also the changes of their respective
modules.

The presented graphic visualization refers only to the
specified time period [0, 65] .

20,

rIMx(t)+4 10

601 0
_400| _ 10
XOC(I)ZOO P(t)
- 20
0
0 2 4 6 0 2
t
7
we(t)3.5
0
0 3 6
t
5
12M(1),

0
2M(tl),
[ 4 1 ]

=5

5 0 5
r2M(1), 12M(11)

4 6r1My(t)—10 0]
; ~10
0 2 4 6 8
t
10
r2M(t)+8
r2M(t),~10
- 10
0 2 4 6

t

Fig. 3.a. Graphs expressing the dependence of the kinematics characteristics of the point M on time t (s)
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Fig. 3.b. Graphs expressing the dependence of the kinematics characteristics of the point M on time t (s)
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Fig. 3.c. Graphs expressing the dependence of the kinematics characteristics of the point M on time t (s)
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Conclusion

The conventional solution of the problem, solved in the
current paper, is related to some difficulties.

These difficulties are easily overcome by using of the
modern mathematical packages in dependences of the aim of
the study. In the considered case, the program MathCAD
package can be used to check the problem solved by the
traditional way.

The automated solution and the graphical editor of
MathCAD provide control and optimization on the obtained
results.

Some adjustments in the initial data are possible in order to
achieve certain values of specific kinematic quantities.

The contemporary teaching of all fields of mechanics at the
universities is related to wusing the most advanced
mathematical packages such as MatLab, MathCAD,
Mathematica, MuPAD and others (Doev and Doronin, 2016;
Bertyaev, 2005; Stoyanov, 2016; Ivanov, 2017; Stoyanov and
Javorova, 2012; Pavlov et al., 2013; Lekova et al., 2013,
Stoyanov, 2017; Pavlov and Evlogiev, 2015; Ivanov, 2018;
Aleksandrov et al., 2012, Ivanov, 2019, Pavlov, 2018).

The presented study demonstrates a fast solution and
excellent graphical visualization as can be seen for example
from the last two figures of the paper. By this way the main
advantages of the MathCAD package are confirmed.
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