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ABSTRACT. Presented research paper analyze assessments of reliability function using goodness-of-fit procedures. The analysis is deepen following the modern 
increased software and computational abilities which allows using better and accelerated mathematical procedures. Particularly goodness-of-fit /GOF/ procedures are 
compared with median rank estimation /MRE/ and maximum likelihood estimation /MLE/ in resolving fitted values for Weibull models in reliability function assessment. 
This study shows diagram CDF – ECDF comparison, as well as the criteria comparison using Kolmogorov-Smirnov, Anderson-Darling and Crammer-Von Mises 

distances. Data sets from jaw crusher lining plates repair periods are used. There are developed hazard and survival functions for reliability assessment based on 
fitted models. 
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РЕЗЮМЕ. Представената статия разглежда методите за интерполиране и оценка на показателите на функциите на надеждността. Ресурсните показатели 
на ремонтните въздействия поради естеството им са времево зависими дискретни данни, които при интерполиране към непрекъсната функция биха дали 

различни показатели в зависимост от използваните методи. Сравнени са класически методи: метод на ранга на медианата, максимум на функцията на 
възможността с метод максимизиращ метод на подобрението (goodness-of-fit). Оценката на показателите на функциите на надеждността е проведено с 
методите: Колмогоров-Смирнов, Андерсон-Дарлинг, Крамер-фон Мизес. Разработен е алгоритъм за приемане на показателите на функциите и оценъчните 
показатели на разпределенията и описващите ги модели. Представени са таблични и графични резултати за визуализация и оценка на моделите, оценките 

и сравнителните им показатели. 
 
Ключови думи: goodness-of-fit; облицовъчни плочи, износване, челюстна трошачка, Вейбул модели, надеждностни модели 

. 
Introduction 
 

Operational properties of machines and their parts 
subjected to unsteady loading and abrasive wear tend to 
show variability despite the fact of strictly determined 
calculation design procedures. Following chain structure 
levels: part - sub-assembly - assembly- machine, the 
complete machine also tends to have inconsistency in its 
operational properties, repair periods and maintenance 
works. All this is enveloped in reliability model and has to be 
used in product lifecycle Minin (2017) management regarding 
the machine operation parameters aggravate in wear 
increasing Hristova (2016). Reliability model structure could 
be based on Weibull function, thoroughly described and 
proven in experimental scientific studies (Weibull (1951), 
Stephens (1974)) regarding such kind of problems. 

The examined object Minin (2017) is a jaw crusher 
operating as gold ore sizing crusher in Bulgarian mine. 
Working process inconsistency depends mostly on the 
variance of ore fragment size and then on rock strength and 
abrasive properties, which vary with mineral-composite 
structure. 

Although finding the proper reliability model, based on 
Weibull function could be a problem itself, the suitable 
function interpolation is equally important issue. The aim of 
this research is to resolve that issue with the significance and 

the adequate values in Weibull function. The solution for 
estimated Weibull model values using median rank estimation 
/MRE/ and maximum likelihood estimation /MLE/ is expanded by 
goodness-of-fit tests (Delignete-Muller (2014), Murthy (2004), 
Krit (2014)), which assists the research engineer to choose 
between various valuated models. 

Some improvements in MRE algorithm with precise Bernard 
interpolation formula (eq. 6) can be found but that improvement 
averages in 0.1 % which is not valuable subject. Finding 
improved mathematical method is done successfully when 
goodness-of-fit functions are implemented as an algorithms in 
fitting software procedures (Delignete-Muller (2014), Krit (2014), 
Krit (2016)). That gives improved abilities in estimation of 
adequate and confident values in chosen reliability function. 
Presented research is focused in reliability function estimation 
improving and its application in real repair and maintenance of 
jaw crusher lining plates. 
 
 

Theory 
 

Weibull probability distribution (density) function /pdf/ is 
defined as three parameter function but in reliability modeling the 

location parameter γ(-,) is often set to 0 (γ=0), so the 
distribution is presented in following form: 
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and cumulative density function /CDF/ is: 
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Other important functional features are: 
 - survival function S(t) defined as admission life period to 
exceed some time interval P(T > t), as follows: 
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-  hazard function is defined by: 
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- mean time to failure /MTTF/ or the expected time to failure 
as an mathematical expectation: 

1
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Computational application of MRE method with precise 
approximation Bernard algorithm formula for median rank is: 
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, where: 
N, number - total number of data; 
i - data point ascending rank; 

After double logarithm of upper formulas, with some 
idealizations it can be achieved: 
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, placed in linear interpolation, for example in spreadsheet, 
so the MRE non-iterative algorithm in calculation of Weibull 
function coefficients uses: 
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The MLE method is accepted by Luciano [Luceno (2006)] 
as asymptotically optimal for large number of continuous 
distribution functions. Although Luceno (2006) and Krit 
(2014), Krit (2016) both based on their researches share the 
idea to use goodness-of-fit test as an algorithm in parameters 
estimation procedure. Initially the idea concerns any 
functions with large change in some intervals or points, which 
lead to large change in likelihood estimator and its 
impossibility of computing.  

Goodness-of-fit estimation is based on algorithms that 
are previously developed as statistical methods proving the 
H0 hypothesis. Usually H0 hypothesis is about that two-
samples of realizations are drawn from same distribution. 

One-sample gof tests H0 hypothesis respects the realizations 
and theoretical function to have the same distribution. There are 
large amount of hypothesis testing functions but in previous 
researches (Luceno (2006), Delignete-Muller (2014), Krit (2016), 
Lazov (2014)) Kolmogorov-Smirnov and Anderson-Darling tests 
are recommended. 

General form of Kolmogorov-Smirnov test is evaluated as: 

   supnm t n mKS F t G t 
 or 

   ˆsupn t nKS F t F t 
     (9) 

, where: 
KSnm - distance (statistic) value; 
Fn(t) - first CDF function with n - sample number; 
Gm(t)- second CDF function with m - sample number; 

 F̂ t
- estimated (theoretical) CDF. It was proven that the 

probability P of distance KSn to be smaller than chosen 
parameter lean to Kolmogorov distribution, as follows:  
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, so the formal transformations have to be taken in attention: 

 ,1n nP KS      , 1n nP KS    
         (11) 

, where: 
α - significance level or - 
CI = 1 - α - confidence interval. 

Statistic value (KSn) appraise the distance between CDF and 
ECDF (respectively theoretical function and observed) at the 
significance level. The p-value in that statistic (KSn) represents 
probability in finding the calculated distance value between CDF 
and ECDF. So the smallest distance (KSn) with high p-value 
means the smoothest and the most precise fit between 
observations and theoretical function.  

It is known that Kolmogorov-Smirnov test Krit (2016), 
Delignete-Muller (2014), Luceno (2006) sensitivity to deviations 
from a cumulative distribution function /CDF/ is not variable 
independent which leads to more sensitivity of test around the 
median and less sensitivity at the extreme ends (tails) of the 
distribution, where cumulative distribution function get near 0 or 
1. Anderson-Darling test remove these disadvantages with 
weighted statistic, but it is in integral form which is computational 
expensive. Real data application for Anderson-Darling is usually 
in the form of:  
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, where: Fn(x) - is empirical distribution function /ECDF; 

 0F̂ x
- theoretical (estimated) distribution function /CDF; 

The other test statistic placed upwards is Cramer - von 
Mises usually in the form of: 
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, using same assignments as in the upper formulas, using same 
assignments as in the upper formulas. 
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Data and results 
 

Here are used Kolmogorov-Smirnov and Anderson-
Darling procedures in comparison to maximum likelihood 
estimation (mle) and median regression estimation (MRE). 
Checking procedure is done in one-sample Kolmogorov-
Smirnov test and Crammer-Von Mises test conducted in 
different computational procedures.  

There are used three data samples marked with D1 to D3 
with different sample size and representing different 
maintenance periods for the considered parts. Data in D1 
presents changing period for lining plate for movable jaw with 
38 samples, D2 is for stationary jaw lining with 87 samples. 
Dataset D3 is chosen from data set D2 after 38-th row, so it 
has 50 samples. Dataset D3 is chosen from same samples in 
order to test computational procedures. 
 

  
 
Fig.1. MRE regression for D1 with linear interpolation of MRE 

 

 
 
Fig.2. Comparison for algorithms fit with ECDF for D1 

 

 
 
Fig.3. Algorithms fit numerical values comparison for D1 (table 
view) 

 

 
 
Fig.4. Algorithms fit values comparison for D1 (chart view) 

 
Interpolation of distribution parameters with different 

algorithms is shown on fig. 1 and fig. 3 as it's noted. This 
particular data set fits quite well in Weibull model despite 
estimation method used. Kolmogorov-Smirnov and Cramer-Von 
Mises test are used after the fitting procedure within different 
computational function. This is shown in comparison table 1 and 
fig. 2. On figures 2, 5, and 8: 

- flags - Kolmogorov-Smirnov estimated distance nKS ; 
- boxes - "η" values; 
- check tick - p-value as and; 

- triangle - estimated nCM  distance. Which representation aims 
easy and distinctive comparison between estimation models. 
 

 
 
Fig.5. Density chart comparison for different interpolation 
algorithms - dataset D1 
 

The same procedure is used, so following are the D2 
processing results: 
 

 
 
Fig.6. MRE regression for D2 with linear interpolation of MRE 
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Fig.7. Comparison for algorithms fit with ECDF for D2 

 

 
 
Fig.8. Algorithms fit numerical values comparison for D2 (table 
view) 

 

 
 
Fig.9. Algorithms fit values comparison for D2 (chart view) 

 

 
 
Fig.10. Density chart comparison for different interpolation 
algorithms - dataset D2 
 

The improved procedure using goodness-of-fit procedure 
shows better results with both datasets, so it is supposed to be 
tested with some testing pieces, so following are the D3 
processing results: 

 
 
Fig.11. MRE regression for D3 with linear interpolation of MRE 

 

 
 
Fig.12. Comparison for algorithms fit with ECDF for D3 

 

 
 
Fig.13. Algorithms fit numerical values comparison for D3 (table 
view) 

 

 
 
Fig.14. Algorithms fit values comparison for D3 (chart view) 
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Fig.15. Density chart comparison for different interpolation 
algorithms - dataset D3 

 
The acceptance of these models is controversial 

according to the graphical instruments. The better verification 
is comparison between numerical values from goodness-of-fit 
tests. Results from test verification are placed bellow 
interpolation values as shown in tables 1-3. Base 
researchers Stephens (1974) and O'Connor (2012) prefer 
Kolmogorov-Smirnov with critical asymptotical value 
calculated as: 
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, where  
dα - tabulated constant for Kolmogorov-Smirnov distance 
Stephens (1974) at significance level α = 5%, so d0.05 = 
1.358, or for n > 40 as: 
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For Cramer-Von Mises test critical values [Stephens 
(1974)] are asymptotically calculated as: 

   1 2 10.4 0.6 1.0 1.0nCM n n n CM
         

 (16) 

 

 
 
Fig.16. Function interpolation acceptance block scheme 

 
 

Conclusions 
 

Initial data are being interpolated using chosen function 
(Weibull) and method (MRE, mle, mge.KS, mge.CM). Approved 
result (YES flow) comes after examination check following 
assigned criteria between initial data and fitted function. 
Approved results are being presented graphically and are used 
to draw the other reliability functions, for example: hazard and 
survival function. If the result is not approved (NO flow), new 
function or method iteration are conducted. The iteration process 
continues until the result match the assigned criteria. 
 

 
 

Fig.17. Hazard h(t) function based on estimated and accepted 
Weibull models for D1 
 

 
 

Fig.18. Survival S(t) function based on estimated and accepted 
Weibull models for D1 
 

The result for hazard and survival functions shown in charts 
17-18 match the assigned criteria for data set D1. Analogically 
for data set D2: in charts 19-20 are shown results for hazard and 
survival functions passing assigned criteria; and for data set D3: 
in charts 21-22 are shown results for hazard and survival 
functions passing assigned criteria. 
 

 
 

Fig.19. Hazard h(t) function based on estimated and accepted 
Weibull models for D3 
 

Summary models have to be accepted at particular data set 
admit, with calculated value and author's preference for 
Kolmogorov-Smirnov method implementation of maximum 
goodness-of-fit estimation, so for D1 calculated MTTF1_KS = 
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577.7 h, and hazard function deviations is at interval of 0.5%. 
For D2 calculated MTTF2_KS = 240.9 h, witch show hazard 
function deviations in interval of 0.1%. For D3 calculated 
MTTF2_KS = 258.6 h, hazard function deviations in interval of 
0.3%. It is quite preferable to fit Weibull model using 
procedures of maximum goodness-of-fit with Kolmogorov-
Smirnov or Anderson-Darling procedures. Related hazard 
function h(t) curves and survival function curves S(t) could be 
used in repair cycle analysis and reliability analysis for that 
particular machine. 
 

 
 

Fig.20. Survival S(t) function based on estimated and accepted 
Weibull models for D1 
 

 
 

Fig.21. Hazard h(t) function based on estimated and accepted 
Weibull models for D3 
 

 
 

Fig.22. Survival S(t) function based on estimated and accepted 
Weibull models for D3 
 

The particular fit procedure about distribution laws is in 
constant development, same the software instruments that 
achieve it. Many commercial software packages are widely 
used. In this research in development of program calculation 
as well as computational algorithms and procedures and 
graph presenting plots is used the iterative package for 
RStudio under GNU license in comparison with non iterative 
calculation made in spreadsheet.  

Presented Weibull model fit is well fit to give an account 
of wearing process of jaw crusher liners with shown values in 
parameters interpolation. General view shows that using 

maximum goodness-of-fit procedures gave narrow density 
distribution graph and narrow interval in ECDF comparison so it 
have to be proffered in more precise interpolation of reliability 
function analysis. 

The reliability assessment for hazard and survival functions 
through goodness-of-fit procedures gave very smooth and close 
neighbour graphs as it is shown on fig. 17 till 21 (KS and AD 
charts) which is main achievement and condition to recommend 
GOF procedure despite the fact it is computationally expensive 
and quite complicated in understanding. It is clearly 
recommended in examination of reliability procedures for 
stochastically phenomena in mechanical wearing for mining and 
processing machines. 
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