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RELIABILITY FUNCTION IMPROVED FITTING USING GOODNESS-OF-FIT PROCEDURES
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ABSTRACT. Presented research paper analyze assessments of reliability function using goodness-of-fit procedures. The analysis is deepen following the modern
increased software and computational abilities which allows using better and accelerated mathematical procedures. Particularly goodness-of-fit /GOF/ procedures are
compared with median rank estimation /MRE/ and maximum likelihood estimation /MLE/ in resolving fitted values for Weibull models in reliability function assessment.
This study shows diagram CDF — ECDF comparison, as well as the criteria comparison using Kolmogorov-Smirnov, Anderson-Darling and Crammer-Von Mises
distances. Data sets from jaw crusher lining plates repair periods are used. There are developed hazard and survival functions for reliability assessment based on
fitted models.
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PE3IOME. MpeacTaBeHaTa CTaTvs pa3rnexaa MEeTOAMTe 3a MHTepnonupaHe 1 OLEeHKa Ha NokasaTenuTe Ha (yHKLMUTE Ha HaLexaHoCTTa. PecypcHuTe nokasatenu
Ha PEMOHTHWUTE Bb3AENCTBUS NOpaaW eCTECTBOTO UM Ca BPEMEBO 3aBUCUMM AWUCKPETHU AaHHW, KOUTO NMPY MHTEpRONMpaHe KbM HenpekbcHaTa yHKUmMs Guxa aanv
pa3nuyHK nokasaTeny B 3aBUCHMOCT OT M3non3saHuTe MeToau. CpaBHEHM Ca KNacuYecku MEeToaM: METOA Ha paHra Ha MeauaHaTa, MakCUMyM Ha (yHKUMsiTa Ha
Bb3MOXHOCTTa C METOf, Makcummuaupaly MeTog Ha nopobpenueTto (goodness-of-fit). OueHkata Ha nokasaTenuTe Ha (PyHKUUMTE HA HafeXOHOCTTa e NPOBEAEHO C
meToauTe: Konmoropos-CmupHos, AHaepcoH-[apnutr, Kpamep-thoH Musec. PaspaboTeH e anroputbM 3a npuemaHe Ha nokasaTtenure Ha yHKLUMTE W OLeHbYHUTE
nokasaTenu Ha pasnpegenexusiTa 1 onucealyuTe rn Mofenu. MpeactaBeHn ca TabnuyHy v rpacdpuyHN pesynTaTyi 3a BU3yanu3aLus 1 OLeHKa Ha MOLLenuTe, OLeHKUTe

W CPaBHUTENTHUTE UM NoKasaTenu.

Kniouosu aymu: goodness-of-fit; 0GNMLOBBYHM NN0OYM, U3HOCBaHE, YENIOCTHA TpoLLayKka, Beibyn Moaenu, HaaeXaHOCTHY Moaenu

Introduction

Operational properties of machines and their parts
subjected to unsteady loading and abrasive wear tend to
show variability despite the fact of strictly determined
calculation design procedures. Following chain structure
levels: part - sub-assembly - assembly- machine, the
complete machine also tends to have inconsistency in its
operational properties, repair periods and maintenance
works. All this is enveloped in reliability model and has to be
used in product lifecycle Minin (2017) management regarding
the machine operation parameters aggravate in wear
increasing Hristova (2016). Reliability model structure could
be based on Weibull function, thoroughly described and
proven in experimental scientific studies (Weibull (1951),
Stephens (1974)) regarding such kind of problems.

The examined object Minin (2017) is a jaw crusher
operating as gold ore sizing crusher in Bulgarian mine.
Working process inconsistency depends mostly on the
variance of ore fragment size and then on rock strength and
abrasive properties, which vary with mineral-composite
structure.

Although finding the proper reliability model, based on
Weibull function could be a problem itself, the suitable
function interpolation is equally important issue. The aim of
this research is to resolve that issue with the significance and

the adequate values in Weibull function. The solution for
estimated Weibull model values using median rank estimation
IMRE/ and maximum likelihood estimation /MLE/ is expanded by
goodness-of-fit tests (Delignete-Muller (2014), Murthy (2004),
Krit (2014)), which assists the research engineer to choose
between various valuated models.

Some improvements in MRE algorithm with precise Bernard
interpolation formula (eq. 6) can be found but that improvement
averages in 0.1 % which is not valuable subject. Finding
improved mathematical method is done successfully when
goodness-of-fit functions are implemented as an algorithms in
fitting software procedures (Delignete-Muller (2014), Krit (2014),
Krit (2016)). That gives improved abilities in estimation of
adequate and confident values in chosen reliability function.
Presented research is focused in reliability function estimation
improving and its application in real repair and maintenance of
jaw crusher lining plates.

Theory

Weibull probability distribution (density) function /pdfl is
defined as three parameter function but in reliability modeling the
location parameter y &(-o0,00) is often set to 0 (y=0), so the
distribution is presented in following form:
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and cumulative density function /CDF/ is:

F(y-0)- | f(f>df=1‘exp[_@ﬁ]

—00

(1)

(2)

Other important functional features are:
- survival function S(t) defined as admission life period to
exceed some time interval P(T > t), as follows:

S(t)=1-P(T St)zl_F(t):eXp[_(t/n)ﬂ]
- hazard function is defined by:

fO__f) _ 8 s
h(t)zmzl—F(t):U_ﬁ.t(ﬂ | (4)

- mean time to failure /MTTF/ or the expected time to failure
as an mathematical expectation:

(3)

MTTF = E:n-r[lﬂj
P (5)

Computational application of MRE method with precise
approximation Bernard algorithm formula for median rank is:

- i—0.3175
" N+0.365 6)

, Where:
N, number - total number of data;
i - data point ascending rank;
After double logarithm of upper formulas, with some
idealizations it can be achieved:

In{ln[FT(Inti)J};y:ﬂ-x—ﬁ-ln(n)z,ﬁl-XJr/-\o )

, placed in linear interpolation, for example in spreadsheet,
so the MRE non-iterative algorithm in calculation of Weibull
function coefficients uses:

B=A

P=h = n:exp[—ij
B-In(n7)=A A )

The MLE method is accepted by Luciano [Luceno (2006)]
as asymptotically optimal for large number of continuous
distribution functions. Although Luceno (2006) and Krit
(2014), Krit (2016) both based on their researches share the
idea to use goodness-of-fit test as an algorithm in parameters
estimation procedure. Initially the idea concerns any
functions with large change in some intervals or points, which
lead to large change in likelihood estimator and its
impossibility of computing.

Goodness-of-fit estimation is based on algorithms that
are previously developed as statistical methods proving the
HO hypothesis. Usually HO hypothesis is about that two-
samples of realizations are drawn from same distribution.

One-sample gof tests HO hypothesis respects the realizations
and theoretical function to have the same distribution. There are
large amount of hypothesis testing functions but in previous
researches (Luceno (2006), Delignete-Muller (2014), Krit (2016),
Lazov (2014)) Kolmogorov-Smirnov and Anderson-Darling tests
are recommended.

General form of Kolmogorov-Smirnov test is evaluated as:

)-Gnlt) F(0)-F (1)

KS,, = sup, |Fn (t KS, =sup;

©)
, Where:

KSnm - distance (statistic) value;

Fn(t) - first CDF function with n - sample number;

Gm(t)- second CDF function with m - sample number;

F(1). estimated (theoretical) CDF. It was proven that the
probability P of distance KSn to be smaller than chosen
parameter lean to Kolmogorov distribution, as follows:

n'TlP(J_ S, <x)- x/_z [( S—Xlz)z.ﬁz]

(10)
, so the formal transformations have to be taken in attention:

P(KS, >6,1,)=a= P(KS, <8,,)=1-a )
, Where:

a - significance level or -

Cl =1 -a- confidence interval.

Statistic value (KSn) appraise the distance between CDF and
ECDF (respectively theoretical function and observed) at the
significance level. The p-value in that statistic (KSn) represents
probability in finding the calculated distance value between CDF
and ECDF. So the smallest distance (KSn) with high p-value
means the smoothest and the most precise fit between
observations and theoretical function.

It is known that Kolmogorov-Smirnov test Krit (2016),
Delignete-Muller (2014), Luceno (2006) sensitivity to deviations
from a cumulative distribution function /CDF/ is not variable
independent which leads to more sensitivity of test around the
median and less sensitivity at the extreme ends (tails) of the
distribution, where cumulative distribution function get near 0 or
1. Anderson-Darling test remove these disadvantages with
weighted statistic, but it is in integral form which is computational
expensive. Real data application for Anderson-Darling is usually
in the form of:

dF, ()
]

AD? =n. T '[: (%)~

o(X)- [1 Fo()

, Where: Fr(x) - is empirical distribution function /ECDF;

(12)

Fo (%) - theoretical (estimated) distribution function /CDF;
The other test statistic placed upwards is Cramer - von
Mises usually in the form of:

0

C=n- “
(13)

, using same assignments as in the upper formulas, using same
assignments as in the upper formulas.

]dF()
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Data and results

Here are used Kolmogorov-Smimov and Anderson-
Darling procedures in comparison to maximum likelihood
estimation (mle) and median regression estimation (MRE).
Checking procedure is done in one-sample Kolmogorov-
Smirnov test and Crammer-Von Mises test conducted in
different computational procedures.

There are used three data samples marked with D1 to D3
with different sample size and representing different
maintenance periods for the considered parts. Data in D1
presents changing period for lining plate for movable jaw with
38 samples, D2 is for stationary jaw lining with 87 samples.
Dataset D3 is chosen from data set D2 after 38-th row, so it
has 50 samples. Dataset D3 is chosen from same samples in
order to test computational procedures.
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Fig.1. MRE regression for D1 with linear interpolation of MRE
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Fig.4. Algorithms fit values comparison for D1 (chart view)

Interpolation of distribution parameters with different
algorithms is shown on fig. 1 and fig. 3 as it's noted. This
particular data set fits quite well in Weibull model despite
estimation method used. Kolmogorov-Smirmov and Cramer-Von
Mises test are used after the fitting procedure within different
computational function. This is shown in comparison table 1 and
fig. 2. On figures 2, 5, and 8:

- flags - Kolmogorov-Smimov estimated distance KSn:
- boxes - "n" values;

- check tick - p-value as and;

- triangle - estimated M distance. Which representation aims
easy and distinctive comparison between estimation models.
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Fig.5. Density chart comparison for different interpolation
algorithms - dataset D1

The same procedure is used, so following are the D2
processing results:
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Fig.6. MRE regression for D2 with linear interpolation of MRE
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Fig.10. Density chart comparison for different interpolation
algorithms - dataset D2

The improved procedure using goodness-of-fit procedure
shows better results with both datasets, so it is supposed to be
tested with some testing pieces, so following are the D3

processing results:
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Fig.11. MRE regression for D3 with linear interpolation of MRE
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Fig.15. Density chart comparison for different interpolation
algorithms - dataset D3

The acceptance of these models is controversial
according to the graphical instruments. The better verification
is comparison between numerical values from goodness-of-fit
tests. Results from test verification are placed bellow
interpolation values as shown in tables 1-3. Base
researchers Stephens (1974) and O'Connor (2012) prefer

Kolmogorov-Smirnov ~ with  critical  asymptotical  value
calculated as:
d
KSh < g
" Y2 101240110712 (14)
, Where

do - tabulated constant for Kolmogorov-Smirnov distance
Stephens (1974) at significance level a = 5%, so doos =
1.358, or for n > 40 as:

-2 _ n-L2
KSn <d, -n"Y2 =1.358.n (15)

For Cramer-Von Mises test critical values [Stephens
(1974)] are asymptotically calculated as:
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Fig.16. Function interpolation acceptance block scheme

Conclusions

Initial data are being interpolated using chosen function
(Weibull) and method (MRE, mle, mge.KS, mge.CM). Approved
result (YES flow) comes after examination check following
assigned criteria between initial data and fitted function.
Approved results are being presented graphically and are used
to draw the other reliability functions, for example: hazard and
survival function. If the result is not approved (NO flow), new
function or method iteration are conducted. The iteration process
continues until the result match the assigned criteria.
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Fig.17. Hazard h(t) function based on estimated and accepted
Weibull models for D1
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Fig.18. Survival S(t) function based on estimated and accepted
Weibull models for D1

The result for hazard and survival functions shown in charts
17-18 match the assigned criteria for data set D1. Analogically
for data set D2: in charts 19-20 are shown results for hazard and
survival functions passing assigned criteria; and for data set D3:
in charts 21-22 are shown results for hazard and survival
functions passing assigned criteria.
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Fig.19. Hazard h(t) function based on estimated and accepted
Weibull models for D3

Summary models have to be accepted at particular data set
admit, with calculated value and author's preference for
Kolmogorov-Smirnov. method implementation of maximum
goodness-of-fit estimation, so for D1 calculated MTTF1 ks =

165



Journal of Mining and Geological Sciences, Volume 63, 2020

577.7 h, and hazard function deviations is at interval of 0.5%.
For D2 calculated MTTF2.ks = 240.9 h, witch show hazard
function deviations in interval of 0.1%. For D3 calculated
MTTF2 ks = 258.6 h, hazard function deviations in interval of
0.3%. It is quite preferable to fit Weibull model using
procedures of maximum goodness-of-fit with Kolmogorov-
Smimov or Anderson-Darling procedures. Related hazard
function h(t) curves and survival function curves S(t) could be
used in repair cycle analysis and reliability analysis for that
particular machine.
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Fig.20. Survival S(t) function based on estimated and accepted
Weibull models for D1
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Fig.21. Hazard h(t) function based on estimated and accepted
Weibull models for D3
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Fig.22. Survival S(t) function based on estimated and accepted
Weibull models for D3

The particular fit procedure about distribution laws is in
constant development, same the software instruments that
achieve it. Many commercial software packages are widely
used. In this research in development of program calculation
as well as computational algorithms and procedures and
graph presenting plots is used the iterative package for
RStudio under GNU license in comparison with non iterative
calculation made in spreadsheet.

Presented Weibull model fit is well fit to give an account
of wearing process of jaw crusher liners with shown values in
parameters interpolation. General view shows that using

maximum goodness-of-fit procedures gave narrow density
distribution graph and narrow interval in ECDF comparison so it
have to be proffered in more precise interpolation of reliability
function analysis.

The reliability assessment for hazard and survival functions
through goodness-of-fit procedures gave very smooth and close
neighbour graphs as it is shown on fig. 17 till 21 (KS and AD
charts) which is main achievement and condition to recommend
GOF procedure despite the fact it is computationally expensive
and quite complicated in understanding. It is clearly
recommended in examination of reliability procedures for
stochastically phenomena in mechanical wearing for mining and
processing machines.
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