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ABSTRACT. Pit limits are determined by numerous factors of different nature, including commodity prices, geologic uncertainty, pit geometric design features, 
operational costs, etc. On the one hand, a substantial amount of these factors is related to uncontrollable conditions, such as economic and financial trends on a 
global scale, which lead to varying commodity prices and operational costs. On the other hand, geological uncertainty, geotechnical and technological constraints are 
also of great importance when determining the ultimate pit limits. This article is based on using the Design of Experiments (DOE) paradigm to quantify the 
dependences between different factors and the net present value (NPV) of the ultimate pit contour. Different factors are represented as a set of input variables for a 
pit limit optimisation software (MiningMath) and the obtained net present value under different conditions is evaluated. Two regression models are built for the purpose 
of providing guidance for making robust design decisions. This approach provides a way of quantifying factor influences on the magnitude of the calculated NPV. In 
addition, a smaller set of design alternatives can be considered, which would accelerate the process of reaching an optimal ultimate pit design scenario, taking 
uncertainty into account. 
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ИЗСЛЕДВАНЕ НА ОСНОВНИТЕ ФАКТОРИ, ОПРЕДЕЛЯЩИ РЕНТАБИЛНОСТТА НА КРАЙНИЯ КОНТУР НА ОТКРИТ 
РУДНИК, ЧРЕЗ ПЛАНИРАНЕ НА ЕКСПЕРИМЕНТА 
Димитър Кайков, Кремена Арсова-Борисова, Кирил Куцаров 
Минно-геоложки университет „Св. Иван Рилски“, 1700 София 

 
РЕЗЮМЕ. Границите на открития рудник до голяма степен се определят от фактори с различно естество – цена на продукцията, геоложки риск, 
конструктивни елементи на минните изработки, оперативни разходи и др. Една част от тях се свързват с икономическите и финансовите тенденции в 
международен план, като това рефлектира върху цените на металите и върху разходите за добив и преработка на рудата. От друга страна ключово 
значение върху границите на открития рудник има геоложката изученост на находището, както и геотехнически и технологични ограничения, определящи 
конструкцията на открития рудник. В настоящото изследване е използван подход, базиран на парадигмата на Планирането на експеримента с цел 
търсенето на зависимости между отделните фактори и получаваната нетна осъвременена стойност (NPV) за крайния контур на рудника. Отделните 
фактори са представени като множество от входящи променливи за оптимизационен софтуер (MiningMath и получената нетна осъвременена стойност се 
оценява при различни условия. Създадени са два регресионни модела, които имат за цел да послужат като насока при избора на проектен вариант. Този 
подход позволява количествено да се оцени влиянието на всеки фактор върху рентабилността на крайния контур, както и да се намали броят на 
разглежданите варианти. Приложението на подхода цели да ускори намирането на оптимален вариант за краен контур на открития рудник, отчитайки 
вероятностните уловия. 

  
Ключови думи: проектиране на открити рудници, геоложки блоков модел, икономически модел, планиране на експеримента, регресионен анализ 

 
Introduction 
 

Mining operations are complex activities that require 
careful planning to ensure maximum profitability while at the 
same time taking into account multiple environmental and 
safety considerations. Among the critical decisions in open-pit 
mining is the determination of the ultimate pit contour, which 
directly impacts the economic viability of the project's economic 
viability (Koprev and Aleksandrova, 2022). Numerous factors 
influence the profitability of these contours, and understanding 
their interactions is vital for informed decision-making. These 
factors can be grouped into two major categories: 

1) controllable  
2) uncontrollable.  

In terms of pit limits consideration, a number of factors can 
be considered uncontrollable, which have a great influence on 
the profitability of the mining operation. Hence, this requires a 
thorough investigation of the effects of such factors on the 
profitability of the mining operation with respect to the set of 
controllable factors. This paper presents a comprehensive 
investigation using a Design of Experiments (DOE) approach 
to identify and evaluate the key factors that significantly affect 
the profitability of ultimate pit contours. By applying statistical 
techniques to post-optimisation data of the net present value 
(NPV) for each ultimate pit scenario, this paper aims to provide 
valuable insights and practical guidelines for mining 
professionals to enhance their decision-making process and 
achieve optimal economic outcomes. For this purpose, 
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modern-day mining is heavily dependent on the consideration 
of multiple ultimate pit scenarios. These scenarios serve as a 
basis for mining engineers and geologists and lead to making 
informed decisions on how to further optimise the mine’s 
design and operational planning with the gained insight. 
Hence, this can be considered a trial-and-error process, where 
each consecutive solution and considered scenario is used to 
refine the following one. Therefore, today’s mining requires the 
use of robust and fast-working algorithms, which provide mine 
planners with the tools to optimise the mining operation’s profit 
under the tough conditions of uncertainty and multiple safety, 
technological and environmental constraints. 

 
 
Pit optimisation algorithms 
 

The main purpose of each ultimate pit optimisation 

algorithm is to determine the optimal configuration of an open-

pit mining operation, maximising the economic value of the 

utilised mining and processing technology, as well as the 

geometric features of the pit under the conditions of geological 

and economic uncertainty. Each algorithm is specifically 

designed to address these challenges, while considering 

various constraints and factors. They include the geological 

characteristics of the deposit, mining costs, commodity prices, 

processing costs, environmental regulations, safety 

considerations, and infrastructure limitations (Hustrulid et al., 

2013). Therefore, the algorithm's primary goal is to determine 

the optimal pit shell, which is the outer boundary of the pit that 

encloses the economically viable material to be mined. This 

involves finding the optimal trade-off between the economic 

value of the extracted material, the associated mining costs, 

and different environmental and social aspects. 

Generally speaking, ultimate pit optimisation algorithms 

utilise mathematical and optimisation techniques to solve 

complex problems involving multi-variable constraints and 

objectives. During the past 60 years, optimisation algorithms 

have been extensively researched to the point that they have 

displaced manual methods for an initial evaluation of the 

deposit and for mine planning (ibid.). Several of the more 

notable and flexible algorithms, which have shaped the 

understanding of how such algorithms perform in a real-life 

environment, include: the floating cone method, the Lerchs-

Grossman algorithm, the Pseudoflow algorithm, and algorithms 

for solving Mixed-Integer Linear Programming (MILP) 

problems. 

 
The floating cone method 

The floating cone method is a popular technique used in 
open-pit mining for designing and planning the layout of a new 
mine or the expansion of an existing one. It helps determine 
the optimal pit shell and the sequence of mining blocks to 
maximise the value of the mineral deposit while considering 
various economic and operational constraints. 

The process starts with a geological resource model of the 
mineral deposit, which includes information on the ore body's 
shape, size, and grade spatial distribution. The next step is to 
create a pit shell, which represents the ultimate boundary of 
the open pit. The floating cone method assumes that the 
mining will start from the pit's highest point. At this stage, the 
"ultimate pit" includes all blocks with positive values above the 

cut-off grade. The floating cone is a theoretical slope that 
moves down from the highest point of the pit, progressively 
encompassing blocks with positive values as it descends. The 
blocks that fall within the floating cone are considered part of 
the mineable reserves, and those outside are left as waste 
(ibid.). The floating cone is iteratively adjusted to maximise the 
project's economic value, considering the value of the 
extracted ore, operating costs, and other financial factors. As 
the floating cone descends, it may encounter practical 
limitations, such as physical pit slopes or mining equipment 
restrictions. When these constraints are reached, "pushbacks" 
are designed. Pushbacks involve re-evaluating the pit design 
and creating a new shell around the existing one to include 
additional blocks that were previously excluded due to 
constraints. The process of adjusting the floating cone and 
adding pushbacks is repeated until no more profitable blocks 
can be included. The result is the final pit design, which 
includes the ultimate boundary and the sequence of pushbacks 
that maximise the profitability of the mining project. A notable 
drawback of the algorithm is that it is time-consuming, 
especially for deposits represented by a large number of 
blocks (Ares et al., 2022). Another crucial problem of the 
floating cone method is its inability to find an optimal solution 
when two overlapping pit contours are the optimal solution 
(Jodeiri et al., 2021).  However, it was demonstrated that the 
problem can be overcome by more recent iterations of the 
method (Ares et al., 2022). 

 
The Lerchs-Grossman algorithm 

The Lerchs-Grossman (LG) algorithm is a widely used 
optimisation technique in open-pit mine design and planning. It 
was developed by H. Lerchs and I. F. Grossman in 1965 and 
has since become a fundamental tool for determining the 
optimal ultimate pit shell in a mineral deposit, considering 
economic and physical constraints (Lerchs & Grossman, 
1965). However, the method became practical after its 
implementation by J. Whittle in the mid-1980s (Poniewierski, 
2017). The algorithm seeks to maximise the economic value of 
the mining operation while accounting for factors, such as the 
geometry of the orebody, mining costs, processing costs, and 
commodity prices. It is named after its developers, and its main 
goal is to identify the ultimate pit that contains the highest-
value blocks while considering the economic viability of the 
mining operation (Alford & Whittle, 1986). 

The algorithm works by creating a series of nested pit 
shells. Each pit shell represents a hypothetical pit that includes 
all blocks with a grade above the cut-off grade. The algorithm 
uses a series of mathematical calculations to determine the 
optimal ultimate pit shell. It does this by finding the set of 
nested pit shells that maximises the NPV of the mining 
operation. In some cases, the resulting ultimate pit shell may 
not be practically achievable due to physical constraints or 
other factors. If necessary, additional design modifications, 
known as pushbacks, can be applied to the pit to make it more 
feasible for mining operations. The final output of the LG 
algorithm is the boundary of the ultimate pit, which represents 
the maximum economically viable extent of the open-pit mine. 

The LG algorithm is highly regarded because it considers 
both economic and geological factors in determining the 
optimal pit design. It provides a systematic and efficient 
approach for mine planners to evaluate various scenarios and 
make informed decisions about the mine's layout, leading to 
better resource utilisation and financial outcomes (Nikolov et 
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al., 2019; Svilenov and Nikolov, 2021). However, similar to the 
Floating cone method, a notable drawback of the LG algorithm 
is that it is time-consuming due to the number of computations 
required to navigate the search space. Nonetheless, it 
performs faster than the Floating cone method, deeming it the 
most preferable algorithm for several generations. 

 
The Pseudoflow algorithm 

The Maximum Flow Method as an alternative to generating 
an optimal pit contour has been proven to be a more efficient 
approach for finding the maximum closure, as direct searching 
for it has been deemed inefficient (Hochbaum & Chen, 2000; 
Hochbaum, 2001; Chandran & Hochbaum, 2009; Bai et al., 
2017). A variant version of a graph, known as a flow graph or 
flow network, has been established as a more effective method 
for this purpose. To comprehend this concept more easily, a 
suitable analogy is that of a flow graph as a network of pipes 
designed for transporting water from one city to another. In this 
flow graph, two special nodes are present: the source node, 
where the flow initiates, and the sink node, where the flow 
concludes. 

Each arc in the flow graph, analogous to a pipe, possesses 
a capacity property, allowing a flow to pass through, but only 
up to the capacity limit. It is essential to note that both the flow 
and capacity along an arc must be positive. Moreover, the 
nodes in the graph represent a junction of pipes, meaning that 
the flow into a node must be equal to the total flow out of the 
same node, adhering to the flow balance criteria. The primary 
objective in this network is to search for a flow distribution that 
yields the maximum total flows entering the sink node (or 
leaving the source node). This is commonly referred to as the 
maximum flow problem, which has been demonstrated to be 
equivalent to the maximum closure problem for obtaining an 
optimal pit solution (Bai et al., 2017). However, the relationship 
between water flow and mining concepts is not straightforward. 
To elucidate this association, ore is represented as water 
stored in a source city that must be efficiently transported to a 
destination city through a pipe network. In this network, the 
economic value of a block is not reflected on a node, but rather 
measured by the capacity of the pipe (arc) connecting it with 
the source or destination city. The three types of pipes 
identified are "waste-to-destination," "source-to-ore," and 
"block-to-block." When the maximum flow is achieved, it 
guarantees the optimal utilisation of ores to cover the costs of 
waste excavation (Bai et al., 2017). 

The Pseudoflow algorithm has been proven to produce the 
same results as the LG algorithm and is considered to be one 
of the most efficient methods for solving the maximum flow 
problem (ibid.; Poniewierski, 2017). Its time complexity allows 
for larger models, containing millions of blocks to be solved in 
significantly less time, compared to the LG algorithms, which 
deems it preferable in the newer pit optimisation solvers.  

 
MiningMath’s MILP Branch and Cut algorithm 

Unlike current best practices, MiningMath handles all 
parameters simultaneously and generates multiple scenarios, 
enabling a more comprehensive solution space exploration. By 
doing so, MiningMath provides a more accurate representation 
of the mining operation, optimising the entire project instead of 
focusing on individual stages. MiningMath employs a flexible 
mining optimisation algorithm that combines Mixed Integer 
Linear Programming (MILP) with linearisation methods to 
address the non-linear aspects of the problem. It also uses its 

own Branch and Cut algorithm, which is fine-tuned to the 
specific optimisation problem and provides more efficiency 
than standard MILP optimisers 
(https://miningmath.com/docs/knowledgebase/).  

The MiningMath and LG/Pseudoflow methods are both 
used for pit optimisation, but they differ in their approach to 
maximising project cash flow. One of the key features of 
MiningMath is its use of surface-based formulations, allowing 
the inclusion of geometric constraints and the provision of 
solutions that more closely resemble real mining operations, 
compared to the other algorithms (https://miningmath.com/ 
docs/knowledgebase/). The user has the flexibility to include 
mining and bottom widths, maximum vertical advance rates, 
and other constraints that guide the geometry and direct the 
optimisation problem toward a more realistic and 
technologically feasible search space. This approach also 
eliminates geotechnical errors that can arise with block 
precedence methods, which may provide slopes that are 
steeper than what is desired. Furthermore, MiningMath's model 
optimises all periods simultaneously, and hence, it has the 
potential to find higher NPVs than traditional procedures based 
on LG/Pseudoflow nested pits. Last but not least, the Branch 
and Cut method allows for accelerating the solving time. 

 

 

Assumptions regarding pit limits optimisation 
 
Established practices 

The process of strategic mine planning and pit limits 
optimisation involves breaking down a large pit into smaller 
problems, called pushbacks, for efficient mine production 
scheduling. Typically, this process is divided into three stages: 
finding nested pits, defining pushbacks, and creating 
schedules. This division is made in order to obtain the best 
solution within a realistic time frame. Various techniques and 
algorithms can be used for each stage, but the ultimate goal is 
to identify the final pit limit that maximises cash flow and 
afterwards to determine the optimal extraction block sequence 
within this limit. However, this approach is not short on its 
drawbacks in terms of underestimating the NPV of the project, 
as already mentioned. 

Conventional optimisation practices in mining problems 
assume that all inputs are fixed values and usually do not 
consider uncertainty associated with different parameters, such 
as orebody attributes and market uncertainties. This practice of 
assuming constant metal prices and block values calculated 
from limited data has major limitations that may lead to 
unrealistic assessments and decisions. However, as practical 
and efficient as this paradigm may be, it has some crucial 
limitations, which need to be acknowledged. The pushback 
definition process is usually performed manually, and 
automatic approaches focusing on NPV optimisation often 
overlook geometric requirements and resource constraints. To 
mitigate some of the factors that contribute to errors, 
uncertainties, and approximations in the pit optimisation 
process, certain practices have been introduced. Scenario 
strategies proposed by Hall (2014) and Whittle (2009) can be 
helpful in designing for risk minimisation. However, it is also 
important to check optimistic scenarios to determine 
infrastructure boundaries. Ultimately, the choice of pit 
optimisation method depends on the project's stage, 
objectives, and resources.  

https://miningmath.com/docs/knowledgebase/
https://miningmath.com/%20docs/knowledgebase/
https://miningmath.com/%20docs/knowledgebase/
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Stochastic approaches 
Recent efforts have been made to include uncertainty in 

mine design by using a set of equally likely orebody models in 
combination with stochastic optimisation for the mine 
production scheduling problem (Dimitrakopolous et al., 2002, 
Rimélé et al., 2019, Jelvez et al, 2022). Stochastic integer 
programming (SIP) models have been developed to maximise 
net present value (NPV) and minimise deviations from 
production goals while streamlining the use of a stochastic 
stockpile. However, the SIP approach is computationally 
demanding, and researchers are currently addressing this 
issue through parallelisation. 

Leite and Dimitrakopoulos (2009) have developed 
stochastic optimisation methods using a simulated annealing 
algorithm to optimise scheduling. Although computationally 
efficient, the approach requires a labour-intensive preparation 
of inputs. 

Additionally, scheduling methods, such as genetic 
algorithms and dynamic programming, generate a limited 
variety of solutions due to the single pushback input. Although 
thousands of potential schedules can be generated with 
different methods, they all follow the same stepwise approach, 
which restricts the exploration of the solution space. 
Additionally, a notable drawback of heuristic and meta-heuristic 
approaches is that a global optimum solution is not guaranteed 
and hence this field of study of their implementation for pit 
optimisation can still be considered experimental. Nonetheless, 
they prove to be a promising approach to scheduling and 
potentially to pit limits optimisation due to the reduced 
calculation time required for converging to an acceptable 
solution. 
 
Unresolved problems and possible solutions related to pit 
limits optimisation 

In the mining industry, planning models often rely on 
shortcuts and approximations to accommodate the 
complexities and constraints of a project. This necessitates 
using powerful computational resources to find the optimal pit 
limit and mining sequence that delivers maximum project 
value. One common approximation is using blocks with vertical 
sides to represent a pit design with nonvertical sides, leading 
to errors in the tonnes and grade output. Hence, slope 
accuracy representation plays a crucial role in modelling, with 
the accuracy relying on the number of dependencies used to 
define the slope. Larger blocks may give less slope accuracy, 
while more, smaller blocks can allow for greater accuracy but 
will slow down computations. An average error of 1° is 
considered acceptable (Poniewierski, 2017). Additionally, the 
effect of minimum mining width on the bottom of a shell is often 
overlooked, even when the package used provides such a 
facility, which can change the value of the selected shell used 
for design. It is important to note that no algorithm can give a 
completely accurate solution to the pit optimisation problem, as 
all three algorithms rely on different assumptions making the 
problem solvable in a discrete space. 

Despite the significant efforts put into developing advanced 
optimisation algorithms, there is often not enough emphasis on 
ensuring the accuracy and reliability of the data used in the 
optimisation problem and the proper utilisation of the results 
obtained. As with any optimisation method, the accuracy and 
reliability of the results heavily depend on the input 
parameters, such as metal prices, mining costs, and slope 
angles. Subjectivity in these parameters can lead to biased 

outcomes. A common way of performing pit optimisation is by 
assuming a single value for each input variable in each 
scenario. This may lead to certain biases in the model as 
influential factors usually vary over time. Although this can be 
avoided by dividing the life of mine into distinct periods, 
assuming different sets of values for the input variables is a 
labour and computationally intensive process and hence it is 
avoided in many cases. An alternative shortcut to this problem 
is by assuming factors, dependent on bench levels taking into 
account the variability of costs for a single scenario. 

Another problem worth mentioning is the choice of using 
discounted or undiscounted cashflows to calculate a pit 
contour's profitability. The discounted ultimate pit is proven to 
be no larger than the undiscounted ultimate pit, according to 
Caccetta and Hill (2003), who stated that the discounted 
ultimate pit is a subset of or equal to the undiscounted ultimate 
pit. This theorem was validated through a case study, although 
no robust mathematical proof was used (Askari-Nasab et al., 
2011). Nonetheless, the global validity of this theorem is a key 
issue, as optimisation of NPV instead of undiscounted profit is 
more idealised. On the one hand, introducing time as a factor 
influencing profitability is not an easy task, especially when 
considering cashflow modelling under uncertainty. Hence, the 
NPV approach is an easy-to-use alternative compared to using 
predictions of commodity prices, annual costs and inflation 
levels. On the other hand, the extraction of certain blocks, 
which are considered unfeasible during an optimisation stage, 
occurs during the later stages of the life of mine. Hence, the 
economic value for these blocks is not entirely accurate, 
considering the stochastic nature of the economic value due to 
the uncertainty of commodity price and ore grade estimations. 
Nonetheless, the calculation of the NPV is a more preferred 
parameter accounting for the project’s cashflows, given that 
time is considered a factor in the decision-making process.  

 
 

A DOE approach to the pit limits optimisation 
problem 

 
The use of a Sensitivity analysis is a common way of 

interpreting the most influential factors on the NPV of a mining 
project at a design stage. However, the choice of a sampling 
strategy can be problematic when dealing with multiple factors 
and multiple factor levels which can influence the magnitude of 
the NPV. The most commonly used method for studying the 
influence of different factors on the magnitude of the NPV are 
first-degree models by applying the One-At-a-Time (OAT) 
approach (Nikolov et al., 2019; Chaves et al., 2020; Svilenov 
and Nikolov, 2021). However, a more efficient and more robust 
approach is required when dealing with multiple factors. The 
Design of Experiments (DOE) approach can be considered a 
complementary way to Sensitivity analysis, for several 
reasons: 
1. Compound factor influences can be investigated in a 

controlled and systematic way in the input feature space. 
In addition, DOE allows studying the variation of multiple 
factors by efficiently gathering new data points, while at 
the same time, the required number of runs can be 
drastically reduced. 

2. DOE can be used for testing the system's response by 
applying different inputs to optimise the system. Hence, 
this provides a systematic way of finding the best set of 
controllable factors under different external conditions.  
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3. The DOE approach provides a way for the investigation of 
the robustness of a system by exploring the variation of 
the response variable. Hence, this approach is suitable for 
the future implementation of optimisation algorithms with 
randomised components for solving the ultimate pit limits 
problem. 

 
Fractional factorial design 

Fractional factorial design is used in statistics and 

experimental studies to efficiently investigate the effects of 

multiple factors on a response variable. It is particularly useful 

when many factors are involved, and conducting a full factorial 

experiment (testing all possible combinations of factors) would 

be impractical or resource-demanding.  

In a full factorial design, if there are a k number of factors, 

each with n levels, a total of nk experimental runs should be 

conducted. In contrast, fractional factorial design reduces the 

number of experimental runs by running only a carefully 

selected subset of the full factorial combinations. The goal is to 

obtain enough information about the main effects and some 

interaction effects while minimising the number of experiments 

needed. The selection of the fractional factorial design is based 

on different design strategies, which ensure a balanced 

distribution of factor combinations. Fractional factorial designs 

are commonly denoted as 2k-p designs, where k is the number 

of factors, and p is the number of factors that are fractionated 

(run at only a subset of levels). The division from the full 

factorial design is expressed as 1/2p (Anthony, 2014). This can 

significantly reduce the workload and resources needed for 

experimentation. 

While fractional factorial designs provide useful information 

about the main effects and certain interactions, they have their 

limitations. Some higher-order interactions may be confounded 

with main effects or lower-order interactions, making their 

interpretation challenging. As such, these designs are best 

suited for situations where the primary focus is on identifying 

significant main effects and the most important lower-order 

interactions. Other design methods are considered more 

appropriate for more complex studies. 

 
Screening design 

In Design of Experiments (DOE), a Screening design is a 
type of experimental approach used to quickly and effectively 
pinpoint the key factors that strongly influence the response 
variable of interest (ibid.). The primary goal of a screening 
design is to identify these influential factors while reducing the 
number of experimental trials, resources, and time required for 
the overall experimentation process. Screening designs are 
particularly valuable when dealing with numerous factors, 
making it impractical to investigate all possible combinations 
exhaustively. Instead, these designs involve selecting a 
smaller subset of experimental trials that represent a fraction of 
the total feasible combinations of factors. The chosen subset is 
thoughtfully selected to ensure that critical main effects and, if 
possible, some interactions between factors be accurately 
estimated. 

The most commonly used Screening design is the 
Fractional factorial design. By employing mathematical 
algorithms, like orthogonal arrays or other statistical methods, 
the design ensures that the selected subset of runs provides 
enough information to estimate the main effects and, 
potentially, some two-factor interactions with precision. Upon 

conducting the experimental runs and collecting response 
data, statistical methods are applied to identify the significant 
factors that have a notable impact on the response variable. 
These influential factors can then be further investigated in 
subsequent experiments, such as optimisation or response 
surface designs, to refine the understanding of their effects and 
interactions. 

 

DOE application in the current case study 
For the purpose of this study, the use of the NPV was 

considered to be a better-suited optimisation criterion, as the 
aim of this paper is to rank key input variables, which represent 
factors, influencing the ultimate pit profitability by also 
introducing time as a factor. The purpose of this ranking is to 
provide the pit design team with quantifiable information for the 
set of input factors, which deserve further attention when 
developing different ultimate pit scenarios. In addition, each 
scenario assumes a single value for each factor variable. A 
total of 12 factors were considered for this analysis which 
range in their corresponding domains, depending on the set of 
technological solutions proposed for the exploitation of the 
deposit (Table 1).  
 
Table 1. Input parameters range, accounting for uncertainty 

Parameter Notation Min Base Max 

Variation in Cu grade A -15% 0 +15% 

Variation in Au grade B -15% 0 +15% 

Cu Price, USD/t C 6000 8000 10 000 

Au Price, USD/g D 35 55 75 

Cu Extraction E 0.80 0.85 0.90 

Au Extraction F 0.65 0.73 0.80 

Bottom width, m G 60 90 120 

Mining width, m H 90 120 150 

Overall slope, ° I 35 40 45 

Mining costs, USD J 3.40 3.70 4.00 

Processing costs, USD K 10.63 12.50 14.38 

Mine recovery, % L 0.9 0.93 0.95 

 
The discount rate is assumed to be 10% for all scenarios, 

which are represented as a set of equally probable economic 
block models. It should be noted that all 12 factors were 
considered to be independent of one another, as the inherent 
randomness of the noise in a mining operation results in the 
shift of each parameter in a random direction from the initially 
planned value. One can argue that certain dependences can 
exist, e.g. between processing costs and the extraction of Cu 
and Au; however, the implementation of such relationships 
would require a different sampling method, which is not in the 
scope of this case study. Additionally, when dealing with a 
deposit at a pre-feasibility stage, these relations cannot be 
described robustly. Nonetheless, it is worth investigating how 
different relationships between input parameters can influence 
the NPV distribution at a later stage of the life of mine, when 
actual field data is used for certain factors. 
 

For this case study, the Marvin deposit (https://miningmath. 
com/docs/knowledgebase/formatting-data/datasets) was used 
for 2 major reasons: 
1. The Marvin deposit’s block model is a well-known model, 

used as a “testing ground” for different illustrations of 
concepts and experimental studies in the field of open-pit 
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mining. Hence, results for this model are comparable, as it 
is a public dataset; 

2. The deposit is fairly “light” with a total of 53 271 blocks, 
which makes it an easy-to-handle model from a 
computational point of view. 

The software used for ultimate pit optimisation for this case 
study is MiningMath (v2.3.52) (https://miningmath.com/) due to 
its flexibility for applying different geometrical constraints and 
features regarding the open-pit design. Table 2 shows the 
constraints used for this case study, which aim to introduce an 
element of realism into the software’s solution by using a ramp-
up in the ore’s annual output, as well as different periods in the 
life of mine in terms of waste output. 
 
Table 2. Material output constraints 

Period (years) 
Ore volume 

constraint, Mt 
Waste volume 
constraint, Mt 

1 – 5 10 75 
2 – 10 25 125 
10 – 30 50 125 
30 – end period 25 0 

 
As shown, production periods are grouped in 5-year bins. 

Two experimental design alternatives were used for this case 
study – a Definitive Screening design, (25 runs) and a 
Fractional factorial design (128 runs). All 12 factors were 
introduced in both cases, so as to compare how different each 
estimation would be, given that a different number of runs is 
used for each experiment. Mining sites, which have to deal 
with block models consisting of millions of blocks, are limited in 
the number of considered scenarios, as each one can take up 
to several hours to find an optimal ultimate pit contour, 
depending on the complexity of the algorithm used. So far, 
such mining sites can rely solely on a limited number of 
scenarios, which leads to dealing with scenarios that may not 
be representative of the vast number of solutions in the feature 
space. However, this can be avoided by using the DOE 
approach. The software used for the DOE analysis is Minitab. 
 
 

Results and discussion 
 

A Resolution IV design was assumed for this case study. 
The design generators used include the following relations: H = 
ACDG; J = ABCD; K = BCFG; L = ABDEFG; M = CDEF. 
Hence, the number of runs for the Fractional Factorial design is 
128 (212-5). The defining relations used are as follows: I = 
ACDGH = ABCDJ = BCFGK = ABDEFGL = CDEFM = BGHJ = 
ABDFHK = BCEFHL = AEFGHM = ADFGJK = CEFGJL = 
ABEFJM = ACDEKL = BDEGKM = ABCGLM = CFHJK = 
ADEFHJL = BCDEFGHJM = EGHKL = ABCEHKM = BDHLM = 
BEJKL = ACEGJKM = DGJLM = AFKLM = ABCDEGHJKL = 
DEHJKM = ACHJLM = CDFGHKLM = BCDFJKLM = 
ABFGHJKLM.  

Fig. 2a and 2b show the distribution of the NPV, provided 
from each optimisation scenario with its corresponding set of 
input variables.  

It can be observed that both NPV distributions resemble 
the Normal distribution, which can be attributed to its well-
known property that it is the product of the influence of a 
number of independent random variables. This can be 
observed in the case of investigating the set of optimal 
solutions in a pre-planning stage or at a pre-feasibility stage, 

when the input data regarding the cost model of the pit 
optimisation problem is very limited. 
 

 
Fig. 2a. Empirical CDF vs Normal distribution CDF  
(Screening design) 

 

  
Fig. 2b. Empirical CDF vs Normal distribution CDF  
(Fractional Factorial design) 
 

Indeed, there is no evidence that both distributions behave 
in a non-normal manner, as the results from the Kolmogorov-
Smirnov test yield values above 0.05 (p > 0.150) for both the 
Screening and the Factorial design.  

Table 3 shows the descriptive statistics for the estimated 
NPV in both design methods.  
 
Table 3. Descriptive statistics for obtained NPV results, M USD 

Descriptive 
statistics 

Screening 
design 

Factorial design 
Resolution: IV 
Fraction: 1/32 

Runs 25 128 
Mean 1158.90 1161.07 
Median 1073.50 1179.00 
Std. deviation 544.65 560.15 
Min 255.9 155.9 
Max 2460.1 2873.97 
Skewness 0.58 0.39 
Kurtosis 0.14 -0.10 

 
Results obtained by both methods are similar to one 

another in terms of mean, median, and standard deviation 
values. Both distributions tend to be positively skewed, 
however, the skewness seems to decrease with a higher 
number of observations. The kurtosis in both cases is relatively 
low, which further implies that both distributions resemble the 
shape of the Normal distribution. 



Годишник на МГУ „Св. Иван Рилски“, Том 66/2023 / Annual of the University of Mining and Geology “St. Ivan Rilski”, Vol. 66/2023 

49 

These results alone can be considered a good argument 
that both methods yield a similar set of NPV values. However, 
this resemblance should be studied further by applying a 
suitable regression model in both cases. Results for both 
models are shown in Table 4. 
 
Table 4. Screening design model and Factorial regression 
model 

Parameters 
Screening 

design 

Factorial design 
Resolution: IV 
Fraction: 1/32 

Centre points 1 0 
R² 0.9681 0.9902 
R² (adjusted) 0.9361 0.9886 
R² (prediction) 0.8614 0.9865 

 
The regression model formula obtained from the Screening 

design is as follows: 
 

  34502  1153   849  

 0.1605   17.04   98552  

 1399   50.0  + 22.50  

  131.0   34.2   58709 ²  0.2179 ²

NPV A B

C D E

F G H

I J E H

   

   

  

   

     (1) 

 
It could be observed that certain variables are of second 

order, which would mean that the relationship between the 
factors and the NPV is non-linear, although it exhibits a 
predominantly linear behaviour in some sections of the feature 
space. 

The formula for the regression model obtained from the 
Factorial design is as follows: 

 

= 705 2232   1127  

0.2520   0.66   2280  

 182   2.027  + 8.63  

 13.5 J  31.44  + 1711  +

+ 0.1902   + 2165  17.7

1481 0.2563

0.001344

4  

0.01331C J

NPV A B

C D E

F H I

K L

A C A E B D

B F C E

C I





  

   

 
















                   (2) 

 
Once more, certain compound factor effects are also 

present in the Factorial design model. However, this model 
serves only as an indicator of the compound effects which 
have the highest influence on the estimated NPV. Higher-order 
interactions can indeed exist, however, the modelling accuracy 
is satisfactory, which does not necessarily imply that further 
investigations are required. 

It should be pointed out that for both equations, the 
Variation of Cu estimation and the Variation of Au estimation 
assumed values of 0.85 and 1.15 for their lower and upper 
bounds. These are the fractions used for multiplication with the 
ore grades from the block model. 

In order to verify both models, the residuals in both cases 
were investigated in terms of their randomness, independence, 
and homoscedasticity. As seen below, the residuals in both 
cases follow a near-normal distribution, judging by both 
histograms (Fig. 3a and 3b). 

 

 
Fig. 3a. Residuals histogram (Screening design)  

 

 
Fig. 3b. Residuals histogram (Fractional Factorial design)  

 
This can be further supported by the graph for the 

empirical data and their corresponding values from the normal 
distribution (Fig. 4a and 4b). 
 

 
Fig. 4a. Regression model residuals normality resemblance  
(Screening design)  

 

 
Fig. 4b. Regression model residuals normality resemblance 
(Fractional Factorial design) 
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Once more, the Kolmogorov-Smirnov test was used, which 
yielded p > 0.150 for both design methods. Hence, there is no 
evidence to believe that both distributions are different from the 
Normal distribution. In terms of their independence, in both 
cases, the residuals do not display evidence of autocorrelation, 
as well as heteroscedasticity (Fig 5a and 5b).  
 

 
Fig. 5a. Variation and randomness of regression model residuals 
(Screening design) 

 

 
Fig. 5b. Variation and randomness of regression model residuals  
(Fractional Factorial design) 

 
There is a residual with a higher value, as can be observed 

in Fig 5b; however, this should not be surprising as the NPV 
values can vary significantly with a small change in a certain 
factor. Additionally, big changes in the input parameters may 
lead to smaller changes in the NPV. This is especially true 
when a certain constraint is relaxed for the optimisation 
problem. 

Indeed, both models can be considered valid, and their 
superb accuracy evidently shows that the NPV response 
variable is predominantly linearly dependent on the assumed 
factor levels. Although there is still evidence of the variability of 
the estimated NPV by the software, on a bigger scale the NPV 
response can be approximated by a non-linear model with low-
level interactions between the major factors. However, a 
certain level of the NPV’s variation cannot be explained by this 
approach. This can be attributed to the inherent problem with 
models, which rely on the NPV as an optimisation criterion – 
the mining of certain blocks is postponed due to their 
infeasibility at the initial stage of their evaluation. Additionally, 
the relaxation of some constraints can also lead to non-linear 
behaviour. Nonetheless, the actual relationship between the 12 
input parameters with the NPV can be estimated with satisfying 
accuracy when considering combinations of best and worst-
case scenarios. Therefore, the purpose of both DOE 
regression models is not to eliminate the further need to use 

the optimiser, but rather to quantify the relative importance of 
different factors, denoted by the model’s input variables. 
Furthermore, this can provide a rational way of identifying 
which controllable factors deserve attention in terms of 
applying changes in the considered mining method, pit design 
geometry, or processing technology. Additionally, this would 
also provide a way of estimating which uncontrollable factors 
require further investigation in order to reduce the variability of 
NPV’s distribution (geological surveying, financial modelling, 
etc.). Last but not least, the estimated regression models can 
also serve as a basis for an optimisation problem for finding 
the best search space for exploring different sets of 
controllable parameters in a certain scenario. In any case, the 
obtained results should be validated by solving the optimisation 
problem via the pit optimiser with different sets of input 
variables, as the absolute error of the regression model can 
reach over 150 M USD. Nevertheless, this approach can 
significantly accelerate the process of refining the ultimate pit 
design, as well as the choice of mining method and processing 
technology. 

Fig. 6a and 6b show the standardised importance of the 
considered 12 factors with the addition of second-order and 
compound factor influences. 

 

 
 

Fig. 6a. Pareto chart of standardized effects (Screening design) 

 

 
 

Fig. 6b. Pareto chart of standardized effects  
(Fractional Factorial design)  

 
A comparison of both results can be seen in Table 5, which 

represents each factor’s rank in terms of its influence on the 
NPV result from the optimiser.  



Годишник на МГУ „Св. Иван Рилски“, Том 66/2023 / Annual of the University of Mining and Geology “St. Ivan Rilski”, Vol. 66/2023 

51 

Table 5. Factor ranks for Screening and Fractional Factorial 
design 

Factor 
rank 

Screening design 
Factorial design 
Resolution: IV 
Fraction: 1/32 

1 Au Price* Au Price* 
2 Cu Price* Cu Price* 
3 Var. in Cu grade* Var. in Cu grade* 
4 Var. in Au grade* Var. in Au grade* 
5 Overall slope* Au extraction* 
6 Au extraction* Overall slope* 
7 Mining costs* Mining costs* 
8 Mining width* Cu extraction* 
9 Processing costs* Mining width* 
10 Cu extraction* Processing costs* 
11 Ore losses Ore losses* 
12 Bottom width Bottom width 

* Statistically significant factors 
 

As can be observed, both design methods provide similar 
results regarding factor rankings, which additionally correspond 
to intuitions from practical experience. 

Indeed, commodity prices are the most influential, as 
copper and gold prices are volatile and can vary in very wide 
ranges, especially over longer periods of time. Additionally, the 
accuracy of the Cu and Au grades in the geological block 
model can significantly influence the profitability of the mining 
operations. Both underestimating or overestimating ore grades 
can lead to significant changes in the estimated NPV value. 
Moreover, dilution from different mining technologies is also a 
factor worth further attention. The extraction of both 
commodities, yielded by the choice of mineral processing 
method, are also important parameters which deserve worth 
investigating. Additionally, the overall slope is also a crucial 
factor, which requires a detailed cost-benefit analysis in terms 
of finding a rational set of design parameters under 
geotechnical uncertainty and safety requirements. Mining costs 
and mining width correspond to the choice of mining method, 
as well as equipment choice, which can be considered a 
different optimisation problem on its own. Ore losses in the 
studied domain do not seem to affect significantly the NPV’s 
magnitude and therefore can be considered non-essential 
factors. Last but not least, it should be pointed out that factor 
rankings may vary for different site conditions and hence the 
point of the DOE approach is to estimate them in a robust way 
in the specifics of each mining site.  

 
 

Conclusion 
 

A major conclusion, which can be drawn for the magnitude 
of the ultimate pit NPV is that it is heavily dependent on the 
input parameters, as the MILP model applies a Branch and Cut 
algorithm for disregarding parts of the deposit that are deemed 
infeasible or suboptimal at a certain stage of the life of mine. 
Additionally, changes in the input parameters can lead to 
changes in the pit development schedule or the relaxation of 
certain constraints, which can further influence the NPV value 
of an evaluated scenario. 

Regardless of its limitations in capturing the details of the 
NPV’s volatility, the DOE approach can be used as a guideline 
for estimating the key factors which influence the NPV results 
for the ultimate pit optimisation problem. Furthermore, the high 
modelling accuracy provides a way of improving the 

exploration of the feature space for more feasible design 
alternatives. Although the dependence between the input 
variables and the NPV value is non-linear in the hyperspace 
domain of the input parameters, applying a combination of 
best-case and worst-case scenarios or best-case, worst-case 
and realistic scenarios for the set of input parameters can 
provide a very good understanding of how the profitability of 
different scenarios is influenced by each factor. As a superior 
way, compared to the conventional One-At-a-Time approach, 
the DOE approach applies statistical power in order to regard 
each factor as significant or insignificant. Additionally, it also 
provides a way of quantifying the relationship between different 
factors and their compound effect on the magnitude of the 
NPV. Last but not least, a Screening design could be a 
reasonable solution in cases where block models of a 
substantial size are investigated with optimisation algorithms 
with higher time complexity (e.g. the Lerchs-Grossman 
algorithm), as 25 scenarios provide similar results, compared 
to a Fractional Factorial design with 128 runs. Results in this 
case study prove to be similar in every way (NPV distribution, 
factor ranks), which implies that both approaches can be 
utilised, depending on the scale and complexity of the deposit’s 
block model. Nonetheless, a design with 128 runs is 
preferable, as the variation of the model’s residuals is lower. 
Additionally, the estimate of the NPV’s variance is more 
accurate in the design with 128 runs. 

For future work, this approach would require further 
verification in different geological conditions, as well as for 
more complex block models and more complex optimisation 
scenarios including ore blending constraints, the addition of 
dilution, varying hauling costs and commodity prices in time. 
Additionally, as an improvement over the current approach, 
more or fewer scenarios could be considered with different 
sampling strategies, with the addition of correlating factors, as 
this could lead to a more realistic understanding of the NPV’s 
volatility in the input parameter’s hyperspace. Furthermore, 
data mining (more specifically machine learning) could also 
prove to be a viable approach to this problem, given that a 
proper sampling strategy is used. Regardless of which 
approach is considered for practical use, the parallelisation for 
the ultimate pit scenario calculations is also a problem worth 
studying for the sake of reducing computational time. 
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