NETWORK-CONNECTED PHOTOVOLTAIC INSTALLATION FOR ELECTRICITY PRODUCTION FOR THE TERRITORY OF SOFIA

Malina Ivanova

University of Mining and Geology "St. Ivan Rilski ", 1700 Sofia, E-mail: malina_vatz@abv.bg

ABSTRACT. The article analyses the possibility of designing a photovoltaic power plant for a family house, which is connected to an existing low voltage / LV / electricity distribution network in Sofia with a capacity of 100 kWp, orientation 0°, gradient 30°, and with Si-poly photovoltaic modules. The PVSyst software was used. The most effective option for building the system was chosen: P50 from the three variants of the Poly 285 Wp 72 cells module offered - P50, P90, and P95. The time for investment return in years (pay-back) has been determined at the purchase price of the produced electricity: 0.40 BGN / kWh (fixed feed-in tariff).

Key words: grid connection, photovoltaic power plant, photovoltaic modules, investment, carbon emissions

МРЕЖОВОСВЪРЗАНА ФОТОВОЛТАИЧНА ИНСТАЛАЦИЯ ЗА ПРОИЗВОДСТВО НА ЕЛЕКТРОЕНЕРГИЯ ЗА ТЕРИТОРИЯТА НА ГР. СОФИЯ

Малина Иванова

Минно-геоложки университет "Св. Иван Рилски", 1700 София

РЕЗЮМЕ. В статията се разглежда възможност за проектиране на фотоволтаична електроцентрала за фамилна къща, която е свързана към съществуваща електроразпределителна мрежа за ниско напрежение /HH/ на територията на гр. София с мощност 100 kWp, ориентация 0°, наклон 30° и с фотоволтаични модули Si-poly. Използван е програмния продукт PVSyst.

Избран е най-ефективният вариант за изграждане на с-мата: Р50 от предложените три разновидности на модула Poly 285 Wp 72 cells - Р50, Р90 и Р95. Определено е времето за възвръщане на инвестицията в години (pay-back) при цена на изкупуване на произведената електрическа енергия: 0.40 лв. /kWh (fixed feed-in tariff).

Ключови думи: мрежово свързване, фотоволтаична електроцентрала, фотоволтаични модули, инвестиция, въглеродни емисии

Introduction

The continuing and deepening energy deficit of fossil fuels in the European countries, including Bulgaria, is growing. The economic dependence of the European states on the countries-exporters of oil, natural gas, and other deficient primary energy sources is increasing. The war in Ukraine has aggravated this problem. In this regard, the preparation of a new program for the development of renewable energy sources in Europe has begun. It envisages a sharp increase in the share of alternative and renewable sources in meeting the energy and fuel needs of the European countries. The Bulgarian domestic economic policy, which stimulates the development of the sector of naturally renewable energy sources is in line with the already existing and the new, even stricter, policy of limiting fossil non-ecological energy sources. Regardless of Europe's priority goal of creating competitive, sustainable, and secure power engineering, economic reasons are forcing the Bulgarian government to frequently change its regulations related to renewable energy sources, and seek to limit more expensive energy solutions, involving photovoltaic systems /PS/, despite their long-term beneficial effect (Law on Energy from Renewable Sources, effective from 05.07.2013).

In the present work, a photovoltaic on-grid power plant for a family house has been designed, which is connected to an existing low voltage electricity distribution network /LV/ on the territory of Sofia city with a power of 100 kWp, orientation 0°, gradient (slope) 30°, and with Si-poly photovoltaic modules (Vassilev Hr.et al., 2006). The PVSyst software product was used. The time for investment return in years (pay-back) at the purchase price of the produced electricity of has been determined: BGN 0.40 /kWh (fixed feed-in tariff) (Am Andonov et al., 2009).

Object of research

The object of research in the present development is a photovoltaic on-grid power plant, designed using the PVSyst software product (http:// www.pvsyst.com).

1. Nature

The photovoltaic power plant directly converts solar energy into electricity for general use, including for supplying electricity to the low voltage power network. The photovoltaic converters of solar energy (photovoltaics, PV-panels) are made as elements with a certain area, and are called solar panels. They are elements that convert solar radiation directly into electricity and supply it to the conventional electricity distribution network (Koleva et al., 2003)

Photovoltaic systems form a significant and promising share of RES (renewable energy sources). The free, ecofriendly resource, the favourable regulations, and the incentive mechanisms applied for green technologies in more and more countries around the world are just some of the reasons why in the recent years, the PS have enjoyed increased investor interest, and their use is gradually becoming one of the most dynamically developing directions in the electric power engineering on a global scale.

2. Classification

PS allow classification by various indicators. Depending on the place of installation, the PS can be ground, roof, and built into the building facades, and according to the type of mounting structures - stationary and tracking (follow-up). Solar electrical installations can be autonomous and connected to the power network, and systematisation can be offered depending on their capacity. They are made of photovoltaic panels connected in parallel or in series (http:// www.bzssolar.de).

When connected in parallel, photovoltaics must have the same idling voltage and, more importantly, have the same voltage at the point of maximum capacity.

When connected in series, the photovoltaic panels must have the same characteristics. If this is not the case, the efficiency of the whole "string" is limited by the photovoltaic panel with lowest quality.

3. Production technologies

Currently, PV cells are produced by different technologies, as the efficiency and cost value of the modules vary depending on the material used and the specific conditions. Photovoltaics can be conditionally distinguished by first, second, and third generation technologies (Dechev, 2009).

The first group includes the silicon technologies, which are currently the most common and are characterised by the highest efficiency and price.

The second category of technologies uses photosensitive materials deposited as a very thin layer on a pad of cheap insulating material. They are characterised by a lower price, but are less effective and have a shorter life.

The third group includes concentrating PV technologies, organic photovoltaics, Grätzel cells, etc., which have not yet gained worldwide popularity.

Poly-crystalline silicon photovoltaic modules were used in the study (Koev, 2011; Velev, et al., 2012).

Concept for model research

The article considers the possibility of designing a photovoltaic on-grid power plant for a family house, which is connected to an existing low voltage /LV/ electricity distribution network in Sofia with a capacity of 100 kWp, orientation 0° , gradient 30°, and with Si-poly photovoltaic modules.

The PVSyst software was used. The time for return on investment in years will be determined at the purchase price of the produced electricity: 0.40 BGN / kWh.

The following parameters for project simulation /data/ are entered on the program setting screen: for the city of Sofia, capacity 100 kWp, orientation 0°, gradient 30°, photovoltaic modules Si-poly. Additionally, the following are set: Price of modules: 1 BGN/Wp Price of inverters: 2 BGN/kW Other components: Accessories - 3000 BGN Cabling (wiring) - 7000 BGN Training and analysis: Engineering - 3000 BGN Installation of the plant: Installation of modules - 10 BGN/module Installation of inverters - 500 BGN/inverter Connecting to the network - 10 BGN/kWp **Operating expenses:** Salaries - 24000 BGN/year Financial parameters: Own funds - 100000 BGN Interest on the loan - 3% It is possible to determine the time for investment return in

years (pay-back) at the purchase price of the produced electricity : 0.40 BGN /kWh.

Results obtained

Fig.1. Input data and design content

Fig.2. Data on the connected photovoltaic modules / built PV system/

Fig.3. Losses in the system

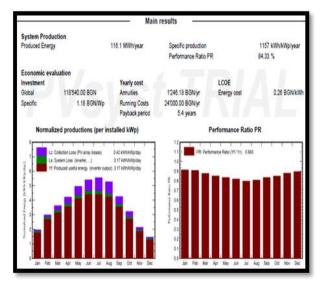


Fig.4. Report on energy production

	GlobHor	DiffHor	T_Amb	Globine	GlobEff	EArray	E_Grid	PR
	kWh/m ^a	kWh/m ^a	°C	kWh/m ^a	kWh/m ^a	MWh	MWh	rato
January	40.1	23.89	-1.41	60.9	59.3	5.90	5.58	0.913
February	60.4	33.05	0.71	84.0	81.8	8.05	7.65	0.908
March	95.1	54.31	5.87	112.4	109.1	10.41	9.88	0.877
April	118.1	66.76	10.42	128.8	122.8	11,39	10.81	0.851
May	153.7	86.04	15.96	153.6	148.8	13.55	12.87	0.835
June	171.4	85.08	19,14	162.3	158.2	14.05	13.34	0.820
July	177.0	72.92	22.02	172.1	168.2	14.50	13.77	0.798
August	156.0	76.36	21.57	163.4	158.4	13.92	13.24	0.808
September	110.8	59.25	15.85	127.7	123.9	11.25	10.69	0.835
October	75.1	37.45	11.48	100.1	97.5	9.00	8.54	0.850
November	44.2	25.63	5.31	64.1	62.4	5.99	5.66	0.880
December	30.2	18.79	0.19	45.1	43.9	4.32	4.06	0.896
Year	1232.1	639.52	10.65	1372.2	1330.2	122.34	116.09	0.843
Legends Global horizontal impliation Differ Horizontal offuse impliation T_Amb Ambient Temperature Globin Global incider in coll plane Globet Ell Effects clobal, con for MM and shadings			EArray E_Gri PR		jected into grid	utput of the array		

Fig.5. Annual main results by months

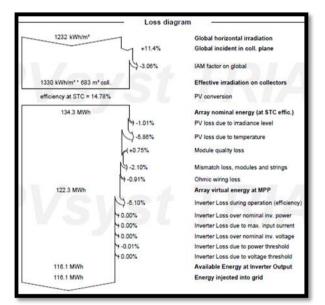


Fig.6. Report of losses from various factors Losses in the system /modules and inverter/

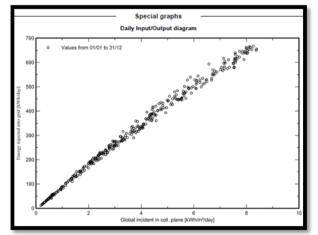


Fig.7. Project simulation parameters - dependence between average daily solar radiation and energy supplied to the network

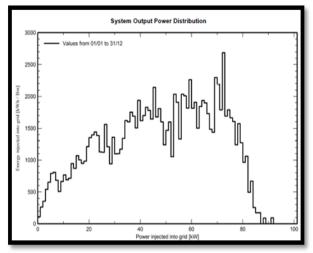


Fig.8. Annual distribution of the output power of the system

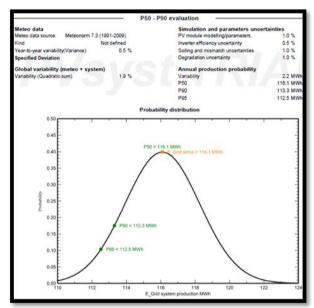


Fig.9. Probability distribution /when building the system with three variants of the module: P50, P90 and P95/

C	ost of the system		
Installation costs			
ltem	Quantity	Cost	Total
	units	BGN	BGN
PV modules			
Poly 285 Wp 72 cells	352	285.00	100/320.00
Inverters			
Central Inverter SOLIVIA CM 100 EU G3	1	200.00	200.00
Studies and analysis			
Engineering	1	3'000.00	3'000.00
Installation			
Global installation cost per module	352	10.00	3'520.00
Global installation cost per inverter	1	500.00	500.00
Accessories, fasteners	1	3'000.00	3'000.00
Wiring	1	7'000.00	7'000.00
Grid connection	1	1'000.00	1'000.00
Total			118'540.00
Depreciable asset			118'540.00
Operating costs		RI	
Item			Total
			BGN/year
Maintenance			
Salaries			24'000.00
Total (OPEX)			24'000.00
System summary Total installation cost Operating costs	118'540.00 BGN 24'000.00 BGN/year		
Produced Energy	116 MWh/year		

Fig.10. Price of the system in BGN and annual production Financial analysis

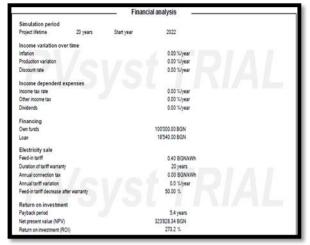
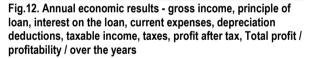



Fig.11. Summary of the result for investment return

	Gross Income	Loan principal	Loan Interest	Run. costa	Deprec. allow.	Taxable Income	Taxee	After-tax profit	Cumul. profit	% amorti.
2022	46'438	690	556	24'000	0	21'881	0	211191	-78'809	18.5%
2023	45'438	711	536	24'000	0	21'902	0	211191	-57617	36.9%
2024	46'438	732	514	24'000	0	21923	0	211191	-36'426	55.4%
2025	46'438	754	492	24'000	0	21945	0	211191	-15234	73.9%
2026	46'438	m	470	24'000	0	21'968	0	211191	5957	92.5%
2027	46'438	800	445	24'000	0	21'991	0	211191	27149	111.05
2028	46'438	824	422	24'000	0	22'015	0	211191	48'340	129.6%
2029	46'438	849	398	24'000	0	22'040	0	211191	69'531	148.2%
2030	45'438	874	372	24'000	0	22'065	0	211191	90723	166.8%
2031	46'438	900	346	24'000	0	22'092	0	211191	111'914	185,4%
2032	45'438	927	319	24'000	0	22119	0	211191	133'105	204.15
2033	46'438	955	291	24'000	0	22147	0	21"191	154'297	222.8%
2034	45'438	984	262	24'000	0	22175	0	211191	175'488	241.5%
2035	46'438	1013	233	24'000	0	22205	0	211191	196'680	260.2%
2036	46'438	1044	203	24'000	0	22235	0	211191	217871	279.0%
2037	46'438	1'075	171	24'000	0	22266	0	21"191	239'063	297.8%
2038	45'438	1107	139	24'000	0	22299	0	211191	260/254	316.6%
2039	45'438	1140	106	24'000	0	22'332	0	211191	281'445	335.4%
2040	45'438	1175	72	24'000	0	22'365	0	211191	302'637	354.3%
2041	45'438	1210	36	24'000	0	22/401	0	211191	323'828	373.2%

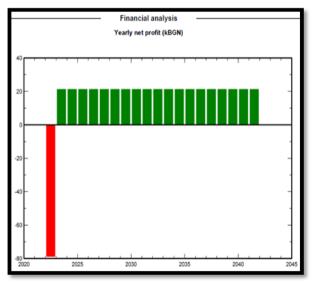


Fig.13. Annual profits

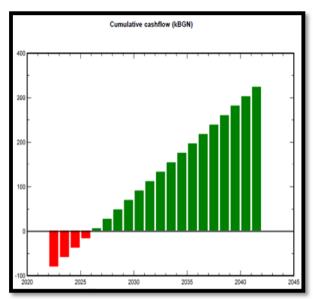


Fig.14. Investment return

Conclusion

A photovoltaic on-grid electric power plant has been designed for a family house, which is connected to an already existing low voltage electricity distribution network /LV/ in Sofia. It is with a capacity of 100 kWp, orientation 0°, gradient 30°, and with Si-poly photovoltaic modules. The PVSyst software was used. The following conclusions were drawn:

- The network-connected photovoltaic power plant consists of 352 photovoltaic modules Poly 285 Wp 72 cells, arranged in 22 strings of 16 modules in a series. It is located on an area of 683 m²;

- The inverter is central: Central Inverter SOLIVIA CM 100 EU G3]

- From the performed calculations with the three proposed variants of the P50, P90, and P95 polycrystalline photovoltaic modules, the P50 module was chosen;

- The final price of the photovoltaic installation in the amount of BGN 323,828 thousand has been determined. With a service life of 20 years, the investments will be repaid after 5.4 years, and within the service life of the power plant will return by 273.2%;

References

- Andonov, K., N. Nedev, M. Manev, K. Koev, L. Mihailov. 2009. Model for evaluation of the efficiency of the designs. for photovoltaic energy parks. *Scientific papers of the University of Russe, 48*, series 3.1 (in Bulgarian with English abstract).
- Dechev D. 2009. *Slanchevi kolektori i sistemi*. Tehnika, Sofia, 78-101 (in Bulgarian).
- Koev, K. 2011. Modeling the influence of some factors on the temperature of photovoltaic modules. - Power Engineering, 3, 41-46.
- Koleva, E., Y. Ivancheva. 2003. A method for assessment of solar radiation in Sofia. *Third National Conference on Renewable Energy Sources*, October 23-24, National Palace of Culture, Sofia (in Bulgarian with English abstract).
- Law on Energy from Renewable Sources, State Gazette, no. 35 from 03.05.2011, effective from 03.05.2011; amended and supplemented, no. 29 from 10.04.2012, effective from 10.04.2012; amended and supplemented, no. 54 from 17.07.2012, effective from 17.07.2012; amended and supplemented, no. 15 from 15.02.2013, effective from 15.02.2013; amended, no. 59 from 05.07.2013, effective from 05.07.2013.
- Vassilev, Hr., G. Ganchev. 2006. Power supply of single-family houses with photovoltaic panels. *Energy Forum*, June 14-17, MDU F.J.Curie, Varna, (in Bulgarian).
- Velev, M., L. Ilieva, T. Todorov. 2012. Modeling Photovoltaic Electricity Production in Bulgaria. - *Entrepreneurship & Innovation Journal*, *4*, 75-87.

http:// www.bzs-solar.de

http:// www.pvsyst.com