[oduwHuk Ha MI'Y ,Cs. MeaH Puncku®, Tom 65/2022 / Annual of the University of Mining and Geology “St. Ivan Rilski”, Vol. 65/2022

IMPROVING PASSWORD GENERATION USING BIAS FROM LEAKED DATA

Ivan Drankov

University of Mining and Geology “St. Ivan Rilski”, 1700 Sofia; E-mail: ivan.drankov@mgu.bg

ABSTRACT. Different brute force algorithms can be optimised by creating a better method for “guessing” the right password. Improving the performance of brute
force algorithms can help in generating hard-to-guess passwords based on opposing non-bias rules when creating a password. Passwords created by users have a
bias with specific keystrokes that can be analysed. Brute force can be improved by bias. Bias prediction rules can be summarised and used in brute force generation
and password generation. This article uses various leaked data with a total amount of millions for generating templates and bias rules.

Keywords: Brute force, leaked data, human bias, big data.

NOAOEPABAHE FEHEPUPAHETO HA MAPONW, U3NON3BAWKU NOTPEBUTENCKN NPEANOYUTAHUA, U3BNEYEHU OT
WU3TEKNU OAHHU

WUeaH [lpbHkos

MurHo-eeonoxku yHusepcumem ,Cs. Mear Puncku®, 1700 Cocpusi

PE3IOME. Pasnnynute brute force anroputmu morat ga 6baar OnTUMM3MpaHM ypes Cb3gaBaHETO HA No-gobbp METod 3a ,MO3HaBaHe Ha TOYHaTa naporna.
lMonobpsiBaHeTO Ha ePeKTUBHOCTTA Ha TE3W anropuTMK € B NOMOLL NPU reHepupaHe TPyOHM 3a ,M03HaBaHe" napon, OCHOBaBaLLO ce Ha 0BpaTHUTe npasuna — 3a
L HenpeanounTaHue” Npu cbagaBaHeTo Ha napora. [MaponuTe, Cb3fgageHu oT NoTpebutenute, UMaT WabnoH Ha NPEANOYMTaHUS KbM KOHKPETHU HAaTUCKaHW KNaBuLLK,
KOWMTO MOXe Oa ce aHanuaupa. Brute force anropurmMute Moxe Aa Ce YCbBbPLUEHCTBAT MPU OTYMTAHE Ha CKNOHHOCTTa Aa Ce HaTWCKaT onpedeneHn KnaBulln.
[MpaBunata 3a nMporHo3upaxe Ha NOTpebUTeNnckUTe NPeAnoYNTaHNs MoraT a ce 0bobLAT K Ja nocrnyxar 3a cb3faBaHe W fobaBsHe Ha HOBW MpaBuna 3a CroXHa
reHepauums Ha naponu. Tasu CTaTus M3Non3Ba PasnuyHN U3TEKNM AaHHW ¢ oblua ronemMmuHa Haj MUMMOHM 3anucu 3a reHepupaHe Ha LWabroHu M npasuna Ha
noTpeduTenck1Te NPUCTPaCTHS.

KniouoBu gymu: Brute force, nsrekna uxdopmaums, YoseLuku dakTop, big data.

Introduction

Randomly generated passwords do not have bias. They
are not truly random. Their generation depends on a randomly
selected seed. Generating passwords from different seeds is
the key to increasing randomness. Human-created passwords
are not random. Most people tend to use passwords which are Fig.1 Heat map of about 4 million users’ password keystrokes.
easy to remember and read. Therefore, biased behaviour can
be observed, such as: .

-Some characters are not used in the process. Different Brute force algorithms
languages have different character frequencies.

- Uncommon characters are rarely used just because most Many relevant search problems, from artificial intelligence
people do not even know they are allowed in passwords or are to combinatorics, explore large search spaces to determine the
hard to remember. presence or absence of an ascertained object. These problems

-Repeating common phrases. Some users use passwords are hard due to combinatorial explosion and have traditionally
that contain a base phrase or repeating pattern. been called infeasible. The brute-force method, which at least

Observing this behaviour can lead to a more efficient way implicitly explores all possibility-ties, is a general approach to
to generate new password dictionaries for brute-forcing systematically searching through such spaces (Heule, 2017).
attacks. Brute force is still an effective method for exploiting Brute forcing passwords can be categorised in the
vulnerable loT devices. following categories:

-Random generation. This method is generating random
passwords to “guess”. For longer passwords, this method is
ineffective.

119

[oduwHuk Ha MI'Y ,Cs. MeaH Puncku®, Tom 65/2022 / Annual of the University of Mining and Geology “St. Ivan Rilski”, Vol. 65/2022

-Dictionary attack (rainbow list). This method uses
dictionaries containing real leaked passwords. If the attacked
device has one of those dictionary passwords, guessing it will
be a fast process.

-Pattern attack from the dictionary. Creating substrings
from existing passwords when the dictionary attack cannot
succeed.

The “guessing” time of the password depends on the
password complexity and processing power. Most passwords
can contain as many as 94 characters. Those characters can
be categorised into different subsets from the total set of 94, as
shown in Table 1.

Table 1. Password combinations for a 10-character-long
password

TOTAL combinations 9410 5,38615E+19
(A-Z) 2610 1,41167E+14
(a-z) 2610 141167E+14
(0:9) 100 10000000000
(Sp) 3210 1,1259E+15
(A-Z) + (a-2) (26+26)"° 1,44555E+17
(A-Z) +(0-9) (26+10)1 3,65616E+15
(AZ) + (Sp) (26+32)'0 4,30804E+17
(a-z) + (0-9) (26+10)1 3,65616E+15
(az) + (SP) (26+10)'0 4,30804E+17
(0-9)+(SP) (32+10)0 1,70802E+16
All 10-character- 9412(2(;2}{21%1)0101 010-

Egrisg;’::tjions fora ?226+32)1°-(26+10)1°- 5,28295E+19
Google Account (26+32)10-(32+10)10

Most services enforce additional rules to increase
password complexity based on those subsets. This can be
described in Regex. One common rule is: Minimum eight
characters, at least one upper case English letter, one lower
case English letter, one number, and one special character.

In this case, a password must contain:

o Atleast one upper case English letter:(?=.*?[A-Z])

o Atleast one lower case English letter:(?=.*?[a-z])

o Atleast one digit :(?=.*?[0-9])

o At least one special character or space: (?=*?[#?!@$

%M&*])
o Minimum eight in length: .{8,}

A(P=.*P[A-Z])(?=.*P[a-2])(?=.*?[0-9]) (?=.*2[#?1@$ %~&*-]).{8,}$

Fig. 2 Password Regex.

Human bias attack

Character frequency can be used to determine the
language (Kerwin, 2006). In this case, analysing data sets from
user passwords can be used in creating a template for
generating passwords. To create a generation method from
human-made passwords, large password sets are needed.
Those sets can be separated by type of the service they
protect. For example, brute-forcing loT devices will not benefit
from templates created from password sets used in web
forums. So, choosing the right data is a key factor, too, thus

increasing the odds of success. After creating proper
templates, the most common characters from those data sets
have priority over the uncommon ones in brute force password
generation.

Fig 3. Character frequency from 3723515 leaked E-mail
passwords

In the generated template, the following can be observed:

e The most common character is “1” used exactly 2541116
times with a chance of =68.25% to appear in any given
password.

e The least common character is “@” used exactly 5 times with
a chance of =0.000134 to appear in any given password.

The results can be divided from the different password
subsets that can be described in one string. The order of
characters is not random. It represents the frequency of the
characters. The first character is always the most common and
the last one is the rarest.

Table 2. Passwords subsets ordered by frequency
subset Frequency string

(A-2) AESIORNDLKYMUTVFBGCPZHJXWQ
(a-2) aerintosklyfmdvhbgwucgzpjx

(0-9) 1029385764

(Sp) |~ PDS+A(%=""3]"\H<~}>@

The overall subset frequency indicates the percentage of
subsets of characters used in password creation. The subsets
(0-9) and (a-z) come on top. This means that every password
contains at least 3.7 numbers, 4.2 lowercase letters, 0.27
uppercase letters, and 0.02 special characters.

Table 3. Passwords subsets ordered by overall frequency
0-9 a-z A-Z SP
3,799974 | 4294155 | 0,272275 | 0,028605

The most used password length for a password is 10
characters. The second most used length is 8 characters. Most
passwords will be distributed in this range (7-13 characters).

Chart Title
1000000
900000
800000
700000
600000
500000
400000
300000
200000

100000

6 7 8 9 101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 20 30 31 32 33 34 35 36 37 38 394041 42 43

Fig. 4. Password lengths

[oduwHuk Ha MI'Y ,Cs. MeaH Puncku®, Tom 65/2022 / Annual of the University of Mining and Geology “St. Ivan Rilski”, Vol. 65/2022

Character subset frequency by position can indicate the
likelihood of any character subset of being included in any
chosen position.

Table 4. Character subset frequency by position

pos1 pos2 pos3 pos4 | pos5
A-Z 0,068 | 0029 | 0,032 0,027 | 0,027
a-z 0,566 | 0541 | 0633 | 0525 | 0,492
0-9 0374 | 0428 | 0332 | 0444 | 0477
Sp 0,002 | 0,002 | 0,003 | 0,004 | 0,004

pos6 pos7 pos8 pos9 | pos10
A-Z 0,027 | 0032 | 0,034 | 0,033] 0,033
a-z 0463 | 0484 | 0445| 0515| 0,491
0-9 0505 | 0479 | 0516 | 0,445 | 0469
Sp 0,005 | 0,005| 0,005| 0,007 | 0,007

Improving password generation

These results can be used to create better password
generation. Using the gathered data, a new brute force
algorithm can be made. This new algorithm is supposedly
better. Based on the collected data, this new algorithm will
generate a new password to “guess” grounded on the
following:

-The password is between 7 and 13 characters;

-The characters used in password generations must have
a frequency > 1% (top 80% characters by frequency);

-The order of generation is based on the overall subset
frequency and on the character subset frequency by position.

In the case of 10 characters with those rules, long
password (5,63135E+18) combinations will be generated. Or
about 9% of the total possible combinations are excluded. In
other words, this algorithm checks the top (=91%) of the total
combinations for Google accounts (528295E+19) based on the
template. The other =9% will be generated last. The expected
performance improvements are at least (9%).

Testing such algorithm is not feasible due to the
long computing time

Brute forcing improvements can be used as a by-product of
secure password generations.

To create secure passwords, a variety of factors must be
considered:

121

-Passwords from public leaked data must be excluded.
Password generators must use data sets from leaked data to
check for unfavourable matches. Services such as HIP (Have |
Been Pawned) can be used in this case.

-Excluding passwords with an obvious template. The
password generator must check if the generated password
matches a given template created from analysed leaked
passwords.

Human bias attack is categorised as a template. To
exclude passwords from these templates, password generation
rules must be added. Examples of these rules are:

-A password must contain at least 1 or more characters
with a frequency of under 10%;

-Password length must be over the median for any given
template;

- At least one character subset frequency by position must
be lower than 30%.

Conclusions

Creating passwords that do not obey the human bias
generation rules in those brute-force algorithms can be more
secure. Larger sets of data will increase the likelihood of new
generation rules. Those rules can lead to more improvements
in the speed of “guessing” a password created by a human.
Testing such an algorithm is not feasible due to the long
computing time. To test and improve the method for the
generation of secure passwords suggested in this article
artificial intelligence can be created. Using artificial intelligence
the computation time can improve and lead to a more feasible
computation time. This can be considered in father
developments for the human bias attack.

References

Heule, M. J. H., O. Kullmann. 2017. The science of brute force.
- Communications of the ACM, 60, Issue 8, 70-79.

Kerwin, T. 2006. Classification of natural language based on
character frequency. — Twenty-Eighth International Florida
Artificial Intelligence Research Society Conference.

Manning, C., H. Schutze. 1999. Foundations of Statistical
Natural Language Processing. 712 p.

Mohammad, A., O. Saleh, R. A. Abdeen. 2006. Occurrences
Algorithm for String Searching Based on Brute-force
Algorithm. — Journal of Computer Science, 2(1), 82-85.

Navor, P. 2021. The Effects of Password Length and
Complexity on Password Resiliency. University of Hawai‘i-
West O‘ahu.

