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STRESSES AROUND A HORIZONTAL MINE GALLERY PASSING THROUGH A CRACKED
ROCK MASS
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ABSTRACT: A horizontal mine gallery is driven into a rock mass with cracks. The cracks in it are located in horizontal parallel and closely spaced planes. The field
between them is linear and isotropic. The cross-section of the gallery is an ellipse. The stresses at points around the gallery are determined by an approximate method.
According to it, the rock mass is presented as an equivalent uniform transversely isotropic field. The expressions for the constants of this field include the normal and
tangential stiffness of the cracks. The specified class of problems is solved with the complex potential theory. The expressions for the stresses are in a cylindrical

coordinate system.
The constants for a real cracked rock mass are defined. The values of the tangential normal stresses at points of the ellipse are obtained. These stresses are compared

to the stresses in an equivalent uniform isotropic rock mass.
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HANPEXEHWA OKONO XOPU3OHTANHA MUHHA TANEPUA, NPEMUHABALLA NPE3 HAMYKAH CKAJNNEH MACUB
Paiina Byyeea Buonema TpughoHosa-I"eHosa

MurHo-eeonoxku yHueepcumem ,Ca. MeaH Puncku®, 1700 Cogpusi

PE3IOME: Xopu3oHTanHa MiHHa ranepusi € npokapaHa B ckareH Macvs C nyKHaTuHU. [yKHaTUHUTE B HETO ca PasfoNoXeHU B XOPU3OHTANH YCropeaHu 1 6rnsko
pa3nonoxeHy paBHuHM. Cpepata Mexay TX e NMHelHa 1 U30TPONHa. HanpeyHoTo ceyeHue Ha ranepusiTa e enunca. HanpexeHusiTa B TOYKM OKOMO ranepusita ce
onpeaensiT ¢ npubnuauteneH Metoa. Cropes Hero, CkanHus MacuB ce NPEACTaBs kaTo ekBUBANEHTHa EAHOPOAHA TPaHCBEP3anHO M30TPONHa cpefa. B uspasute 3a
KOHCTaHTWTe Ha Ta3u Cpefia yyacTsaT HopMarnHaTa W TaHreHUpManHa kopaBuHI Ha NykHaTUHUTE. Yka3aHWsT Krac 3afauv ce peluaea ¢ KoMnekcHaTa noTeHupana
Teopusi. V3paauTe 3a HanpexeHusiTa ca B LMIMHAPKUYHA KOOpAWHATHA cucTEMa.

3a peaneH HanykaH CkarneH MacvB ca Onpeseneri KOHCTaHTUTE. MonyyYeHu ca CTOMHOCTUTE Ha TaHTEHLMANHUTE HOPMAITHU HanpexXeHus B TOYKW OT enuncata. Teau
HamNpEXeHMs Ca CPABHEHU C HANPEXEHSITA B EKBUBANEHTEH eJHOPOLEH U30TPONEH MacKB.

Kniouosu AYMU:. KOMNJieKCHaTa noTeHumanHa Teopus, MMHHa ranepus, HanykaH ckaneH macue.

Introduction Ata great depth H , amining gallery has been driven. It has

an elliptical cross-section with dimensions 2a and 2b. The

The distribution of stresses around the opening of a Cartesian coordinate system has its origin at the center of the

horizontal mine gallery is used in the assessment of rock hole (fig.1).

strength. For this, it is necessary to match the stresses in the

rock mass around the hole with the strength of the soil. When Vi O

studying the stressed state of the rock massif around the gallery, | =
a model is used that takes into account the continuity and 1‘
uniformity of the environment. Analytical methods for this type I:]a 1
|

of tasks have been developed in literature (Mushkhelishvili,
1953; Minchev, 1960).

But in nature, the properties of rocks are diverse, due to
many natural factors. Among them, the existence of cracks has
the greatest weight. If the rock massif has one or several cracks,
the boundary element method is suitable (Crouch et al., 1983). kO
It uses tension and compression boundary contact elements. Le
For the case of a rock mass with very closely spaced cracks,
this method is irrational. Therefore, an approximate approach is
described in (Godman, 1976).

The aim of the present work is to investigate the influence of
cracks in this array on the stresses around a horizontal mine R
gallery with an elliptical cross-section using this approach.
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Fig. 1. Calculation scheme

Methods
The hole's influence extends into a rectangular area with

1. Formulation of the problem dimensions 124 and 125. The vertical and horizontal load (Q

and k,Q ) along the contour of the area (fig. 1) is equal to the
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stress components at a point of undisturbed rock array. The
analytical expressions for these components are:

o

G;:W:Q,O'f:klo-;:le, O-::kZGy'“)

where

- kl and k2 are the coefficients of lateral resistance;

- ¥ is the volumetric weight;

- y is the vertical coordinate of the point (fig.1).

The directions of these components are given in Figure 2.

Fig. 2. Stresses in an undisturbed rock mass

For a rock mass with a horizontal plane of isotropy, the
coefficients of (1) have the form:
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The deformation coefficients in these expressions are
expressed by the medium constants:
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where
-E E},, E_ are Young's modulus in the direction of the

coordinate axes x, y and Z;
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transverse deformations in tension and compression in the
direction of the coordinate axes.
If the medium is perfectly isotropic for the coefficients of

are Poison’s ratio characterising the

lateral resistance k] and kz,A. N. Dinnik’s formula is obtained:

()
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2. Additional stresses

These tensions are caused by the presence of the gallery.
They are determined by means of two unknown complex
functions. The sum of these functions is a function of stresses

F(xyy). It satisfies the quasi-bi harmonic equation
(Muskhelichvili, 1953; Minchev, 1960):
o'F o'F o'F
s~ +h; —=—5+b,—5=0, (5)
ox Ox“0y oy

where by, = (2b13 +b55).

Here, x and y are coordinates of a point midway around the
hole. The coefficients in this equation are expressed by Young's
modulus, Poisson's ratios in the plane of isotropy and in a
direction perpendicular to it, and have the following form:

b _ _VYX Xy b _l_vxz
11 v Y33 T E ’
y X
— Vyx + Vyx VXY . b _ 1 6
13 = E » Y55 T ( )
y Xy

The stress function depends on variables in which the roots
of the characteristic equation are involved (lvanova, 2022;
Minchev, 1960; Trifonova-Genova, 2019):

blls4 +(2b13 +bss )b17S2 +b,;, =0, (7)

For the problem described above, the roots of equation (7)
are:

s, =i s, =Phis sy =—Bi;s,=—Bi. (8

Here, i is an imaginary unit.

3. Total stresses at a point in the rock mass

Stresses in a transversely isotropic medium are defined as
the sum of the principal stresses existing before the mining
gallery was driven and the additional stresses caused by the
presence of the hole. Then it goes from Cartesian to polar
coordinates. In addition, the real part is separated from general
complex expressions.

Here, we will focus on the stresses along the hole contour,
which have the form (Minchev, 1960):

o
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where
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b b
e, =sin’ $+m’cos® 9, m=—; tgd=—1g0l,;

a a
BC—-A4D
e, =k sin”> 9+m* cos* 9; e3=ﬁ;
+

e, = asin’ §+a,,m’ cos’ 3;

A=A A+ A, A+ A, Ay,

A, =sin” $cos 9; 4, =sin Gcos’ I;

A =sin’ 9cos’ 9; Bi=p+ By Ba=Pbs;
A =kmpy— B, A, =km(2+p,);

A, = B’ —(1+28,)m* —km*;

A4, =sin* 3; 4, =cos* 9;

B =B, A +B A, +B,A;

B, =kmp, - B,; B, =km* - Bm’;

B, =k1m2(2+:34)_(1+2ﬂ4)m2;

C =sin’ 3— B,m’ cos’ $; D = f,msin 9cos 9.

If the rock mass is isotropic, the following formulae are used
for the stresses:

o

(o}

oy =—2(e, +e;), (10)

where

e, =sin’ $+m’ cos® 9; mzz
e, =k, sin”> 3+m’ cos’ 4; e, :M;
C°+D
A=AA,+ A, A+ A A,

A, =sin’ 9cos §; A, =sin Ycos’ &;

A, =sin® Ycos’> §; 4, =2k, —1; 4, =3k;;
A, =—1—k;B=B,A, + B A, + B, 4;

B =2k -1, B, =k, —2p,; B, =3k, -3,
C =sin’ $—cos’ &; D =2sin 9cos3;
C*+D”*=1.

4. Characteristics of a rock mass
The cracks in the rock massif (Figure 1 with square a) are
located in horizontal planes. The distance between them is s .

The material between the planes is isotropic (Fig.3).
Cracks have normal K, and tangential K stiffness. These

parameters are involved in the characteristics of the cracked
array (Godman, 1976; Vucheva et al., 2023):

E G
FE=——G =———+—:
"1+ E/Ns,K,) Y 1+G/(s,K,)
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Here, E is the Young's modulus, v is Poison’s ratio, and G
is the shear modulus in an isotropic field.

y

Fig. 3. Cracked rock mass

The constants from (11) are substituted into (3). The
dependences are obtained for the deformation coefficients:

0 = 1 4 1 u v 4 v
n=- 3= L0 Q=7 Q=77
E Ey E
1%
Ay =—— (12)
Ey

These coefficients are involved in expressions (1) for the
stresses before the excavation of the gallery.

5. Numerical example
In a rock mass, the cracks are located in horizontal planes.

The distance between them is s, = 2m, and the normal and
K,=mo

n

K, =0,2315.10° MPa / m . Between the planes, the
medium is isotropic with the following characteristics:
E=10*MPa, v=0,2;and G=0,4167.10"MPa .
The mining gallery driven through the rock mass has an elliptical
cross-section. The mining gallery has a width of 2b and a

height of 2a . The ratio of the major to the minor axis of the
section is 1.5.

According to (11), the characteristics of the cracked medium
are determined. The coefficients in (6) are determined and
equation (7) is solved. The tangential normal stresses along the
contour of the hole were calculated for two types of rock mass.
Equations (5) are used in the cracked rock mass, and equations
(8) are used in the isotropic rock mass. These stresses are
referred to the stress O in the undisturbed medium. Due to the

symmetry about the two axes, calculations are made for first
square points. The results are listed in Table 1.

The normal tangential stress diagrams are given in Figure
3. The solid line indicates the normal tangential stresses in the

tangential stiffness are and
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cracked rock mass, and the dotted line those in the isotropic rock
mass.

Table 1. Normal tangential stresses in two types of rocks

n [o] o,/0 0,/ 0
1 0 -4.891 -2.75
2 15 -1.512 -2.546
3 30 -0.338 -2.000
4 45 -0.236 -1.249
5 60 -0.386 -0.500
6 75 -0.598 +0.049
7 90 -0.836 +0.25

Fig. 4. Diagrams of the normal tangential stresses in the two
media

The following conclusions can be drawn from Table 1 and
Figure 4.

In both environments, the maximum values of the tangential
normal stresses occur at points on the hole contour through
which the horizontal axis passes. Stresses in the cracked rock
mass are 1.8 times greater than the corresponding stresses in
the isotropic mass.

Along the vertical axis, the stresses in the two media are of
different signs. The stresses in the cracked rock mass are
negative, and in the isotropic rock mass - positive. The values
of stresses in the studied environment are 5.8 times smaller than
the same along axis x .

6. Key findings

From the results obtained above, it can be concluded that
the stresses in a cracked medium are greater than the same in
an isotropic medium. Therefore, it is necessary to take into
account this non-uniformity and apply the environment model
proposed in the work.
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The method described in the article is easy to implement
and does not require the application of any software packages,
but the use of popular calculation tools, such as spreadsheets
(Harvey, 2018).

Conclusion

The described method can be applied to a rock mass having
cracks located in inclined parallel planes. The opening of the
gallery may be of a different shape.

The analytical relationships in this work can be used by
engineers when investigating stresses around underground
facilities.

When cracks are not located in horizontal planes, Goodman
et al. (Goodman et al., 1963) proposed a contact element in the
numerical finite element method (Whintely, 2017; Jing et al.,
2002). The element has a rectangular shape with four nodes.
The stresses in it are proportional to the deformations. The
stiffness matrix included in the ANSYS software package
(Reference manual, 2020) is proposed for it.
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