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ABSTRACT: A horizontal mine gallery is driven into a rock mass with cracks. The cracks in it are located in horizontal parallel and closely spaced planes. The field 
between them is linear and isotropic. The cross-section of the gallery is an ellipse. The stresses at points around the gallery are determined by an approximate method. 
According to it, the rock mass is presented as an equivalent uniform transversely isotropic field. The expressions for the constants of this field include the normal and 
tangential stiffness of the cracks. The specified class of problems is solved with the complex potential theory. The expressions for the stresses are in a cylindrical 
coordinate system.  
The constants for a real cracked rock mass are defined. The values of the tangential normal stresses at points of the ellipse are obtained. These stresses are compared 
to the stresses in an equivalent uniform isotropic rock mass.  
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НАПРЕЖЕНИЯ ОКОЛО ХОРИЗОНТАЛНА МИННА ГАЛЕРИЯ, ПРЕМИНАВАЩА ПРЕЗ НАПУКАН СКАЛЕН МАСИВ 
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РЕЗЮМЕ: Хоризонтална минна галерия е прокарана в скален масив с пукнатини. Пукнатините в него са разположени в хоризонтални успоредни и близко 

разположени равнини. Средата между тях е линейна и изотропна. Напречното сечение на галерията е елипса. Напреженията в точки около галерията се 
определят с приблизителен метод. Според него, скалния масив се представя като еквивалентна еднородна трансверзално изотропна среда. В изразите за 
константите на тази среда участват нормалната и тангенциална коравини на пукнатините. Указаният клас задачи се решава с комплексната потенциална 
теория. Изразите за напреженията са в цилиндрична координатна система.  
За реален напукан скален масив са определени константите. Получени са стойностите на тангенциалните нормални напрежения в точки от елипсата. Тези 
напрежения са сравнени с напреженията в еквивалентен еднороден изотропен масив. 
 
Ключови думи: комплексната потенциална теория, минна галерия, напукан скален масив. 
 

 
Introduction 
 

The distribution of stresses around the opening of a 
horizontal mine gallery is used in the assessment of rock 
strength. For this, it is necessary to match the stresses in the 
rock mass around the hole with the strength of the soil. When 
studying the stressed state of the rock massif around the gallery, 
a model is used that takes into account the continuity and 
uniformity of the environment. Analytical methods for this type 
of tasks have been developed in literature (Mushkhelishvili, 
1953; Minchev, 1960).  

But in nature, the properties of rocks are diverse, due to 
many natural factors. Among them, the existence of cracks has 
the greatest weight. If the rock massif has one or several cracks, 
the boundary element method is suitable (Crouch et al., 1983). 
It uses tension and compression boundary contact elements. 
For the case of a rock mass with very closely spaced cracks, 
this method is irrational. Therefore, an approximate approach is 
described in (Godman, 1976).  

The aim of the present work is to investigate the influence of 
cracks in this array on the stresses around a horizontal mine 
gallery with an elliptical cross-section using this approach. 

 
 

Methods 
 
1. Formulation of the problem 

 

At a great depth H , a mining gallery has been driven. It has 

an elliptical cross-section with dimensions a2  and b2 . The 

Cartesian coordinate system has its origin at the center of the 
hole (fig.1).  

 

 
 

Fig. 1. Calculation scheme 

 
The hole's influence extends into a rectangular area with 

dimensions a12  and b12 . The vertical and horizontal load (Q  

and Qk1 ) along the contour of the area (fig. 1) is equal to the 
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stress components at a point of undisturbed rock array. The 
analytical expressions for these components are:  
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where  

- 1k  and 2k  are the coefficients of lateral resistance;  

-   is the volumetric weight;  

- y  is the vertical coordinate of the point (fig.1). 

The directions of these components are given in Figure 2. 
 

 
 

Fig. 2. Stresses in an undisturbed rock mass 

 
For a rock mass with a horizontal plane of isotropy, the 

coefficients of (1) have the form: 
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The deformation coefficients in these expressions are 

expressed by the medium constants: 
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where 
 

- xE , yE , zE  are Young’s modulus in the direction of the 

coordinate axes x , y  and z ; 

- xy , yx , xz , zx  are Poison’s ratio characterising the 

transverse deformations in tension and compression in the 
direction of the coordinate axes. 

If the medium is perfectly isotropic for the coefficients of 

lateral resistance 1k  and 2k , A. N. Dinnik’s formula is obtained:  
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2. Additional stresses 
 
These tensions are caused by the presence of the gallery. 

They are determined by means of two unknown complex 
functions. The sum of these functions is a function of stresses 
F(x,y). It satisfies the quasi-bi harmonic equation 
(Muskhelichvili, 1953; Minchev, 1960): 
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where   551317 2 bbb  . 

 
Here, x and y are coordinates of a point midway around the 

hole. The coefficients in this equation are expressed by Young's 
modulus, Poisson's ratios in the plane of isotropy and in a 
direction perpendicular to it, and have the following form: 
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The stress function depends on variables in which the roots 

of the characteristic equation are involved (Ivanova, 2022; 
Minchev, 1960; Trifonova-Genova, 2019):  
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For the problem described above, the roots of equation (7) 

are: 
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Here, i  is an imaginary unit.  

 
3. Total stresses at a point in the rock mass 

Stresses in a transversely isotropic medium are defined as 
the sum of the principal stresses existing before the mining 
gallery was driven and the additional stresses caused by the 
presence of the hole. Then it goes from Cartesian to polar 
coordinates. In addition, the real part is separated from general 
complex expressions.  

Here, we will focus on the stresses along the hole contour, 
which have the form (Minchev, 1960):  
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If the rock mass is isotropic, the following formulae are used 

for the stresses:  
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4. Characteristics of a rock mass 

The cracks in the rock massif (Figure 1 with square a) are 

located in horizontal planes. The distance between them is 
os . 

The material between the planes is isotropic (Fig.3).  

Cracks have normal 
nK  and tangential 

sK  stiffness. These 

parameters are involved in the characteristics of the cracked 
array (Godman, 1976; Vucheva et al., 2023): 
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Here, E  is the Young’s modulus,   is Poison’s ratio, and G  

is the shear modulus in an isotropic field.  
 

 
 

Fig. 3. Cracked rock mass 

 
The constants from (11) are substituted into (3). The 

dependences are obtained for the deformation coefficients: 
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These coefficients are involved in expressions (1) for the 
stresses before the excavation of the gallery. 
 
5. Numerical example  

In a rock mass, the cracks are located in horizontal planes. 

The distance between them is mso 2 , and the normal and 

tangential stiffness are nK  and 

mMPaК s /10.2315,0 3 . Between the planes, the 

medium is isotropic with the following characteristics: 

MPaE 410 , 2,0 ; and MPaG 410.4167,0 . 

The mining gallery driven through the rock mass has an elliptical 

cross-section. The mining gallery has a width of b2  and a 

height of a2 . The ratio of the major to the minor axis of the 

section is 1.5.  
According to (11), the characteristics of the cracked medium 

are determined. The coefficients in (6) are determined and 
equation (7) is solved. The tangential normal stresses along the 
contour of the hole were calculated for two types of rock mass. 
Equations (5) are used in the cracked rock mass, and equations 
(8) are used in the isotropic rock mass. These stresses are 
referred to the stress Q  in the undisturbed medium. Due to the 

symmetry about the two axes, calculations are made for first 
square points. The results are listed in Table 1.  

The normal tangential stress diagrams are given in Figure 
3. The solid line indicates the normal tangential stresses in the 
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cracked rock mass, and the dotted line those in the isotropic rock 
mass.  

 
Table 1. Normal tangential stresses in two types of rocks 

 

n    Q/  Qo /,  

1 0 -4.891 -2.75 

2 15 -1.512 -2.546 

3 30 -0.338 -2.000 

4 45 -0.236 -1.249 

5 60 -0.386 -0.500 

6 75 -0.598 +0.049 

7 90 -0.836 +0.25 

 
 

 
 

Fig. 4. Diagrams of the normal tangential stresses in the two 
media 

 
The following conclusions can be drawn from Table 1 and 

Figure 4: 
In both environments, the maximum values of the tangential 

normal stresses occur at points on the hole contour through 
which the horizontal axis passes. Stresses in the cracked rock 
mass are 1.8 times greater than the corresponding stresses in 
the isotropic mass.  

Along the vertical axis, the stresses in the two media are of 
different signs. The stresses in the cracked rock mass are 
negative, and in the isotropic rock mass - positive. The values 
of stresses in the studied environment are 5.8 times smaller than 
the same along axis x .  

 
6. Key findings 

From the results obtained above, it can be concluded that 
the stresses in a cracked medium are greater than the same in 
an isotropic medium. Therefore, it is necessary to take into 
account this non-uniformity and apply the environment model 
proposed in the work.  

The method described in the article is easy to implement 
and does not require the application of any software packages, 
but the use of popular calculation tools, such as spreadsheets 
(Harvey, 2018).  
 
 

Conclusion 

 
The described method can be applied to a rock mass having 

cracks located in inclined parallel planes. The opening of the 
gallery may be of a different shape.  

The analytical relationships in this work can be used by 
engineers when investigating stresses around underground 
facilities. 

When cracks are not located in horizontal planes, Goodman 
et al. (Goodman et al., 1963) proposed a contact element in the 
numerical finite element method (Whintely, 2017; Jing et al., 
2002). The element has a rectangular shape with four nodes. 
The stresses in it are proportional to the deformations. The 
stiffness matrix included in the ANSYS software package 
(Reference manual, 2020) is proposed for it. 
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