
Годишник на МГУ „Св. Иван Рилски“, Том 65/2022 / Annual of the University of Mining and Geology “St. Ivan Rilski”, Vol. 65/2022 

103 

 
 
 
 
 
 
 
 
FINITE STATE MACHINE OPTIMISATION THROUGH RESOURCE SWITCHING 

 
Yassen Gorbounov 

 
University of Mining and Geology “St. Ivan Rilski”, 1700 Sofia; E-mail: y.gorbounov@mgu.bg 

 
ABSTRACT. The article presents an approach for optimising the use of finite state machines in terms of the hardware resource used in physical implementation. This 
is done by using a shared context, which allows the repeated use of one and the same computational structure to perform different tasks. In this way, complex control 
algorithms can be implemented using a reduced number of components. The proposed approach makes it possible to achieve a high degree of integration and 
preserve the integrity of the signal by achieving shorter paths for its propagation. Ultimately, this leads to a reduction in energy consumption and a lower cost. 

 

Key words: finite state machines, context switching, programmable logic. 

 
ОПТИМИЗАЦИЯ НА КРАЙНИ АВТОМАТИ ЧРЕЗ ПРЕВКЛЮЧВАНЕ НА РЕСУРСИ  
Ясен Горбунов 

Минно-геоложки университет „Св. Иван Рилски“, 1700 София 

 
РЕЗЮМЕ. Статията представя подход за оптимизация на използването на крайни автомати по отношение на заемания при физическа реализация 
хардуерен ресурс. Това е направено чрез използване на споделен контекст, което позволява многократната употреба на един и същ изчислителен апарат 
за изпълнение на различни задачи. По този начин могат да бъдат реализирани сложни управляващи алгоритми, използващи редуциран брой компоненти. 
Предложеният подход дава възможност за постигане на висока степен на интеграция и запазване на интегритета на сигнала чрез постигане на по-къси 
пътища за неговото разпространение. В крайна сметка това води до намаляване на консумацията на енергия и понижена цена. 

 
Ключови думи: крайни автомати, контекстуално превключване, програмируема логика. 

 
Introduction 

 
With the burst development of computing technology, the 

demands on digital circuits increase in terms of their speed, the 
reduction of energy consumption, and the increase in the 
degree of integration. For this reason, programmable logic 
devices, which can be distinguished by their high operating 
frequencies, the possibility of multiple reprogramming, and 
their ability to execute parallel algorithms (Pavlitov 2007, Harris 
2013), are increasingly used nowadays. This feature is 
inherent in their architecture and is their undeniable advantage 
over conventional microprocessors and microcontrollers. 

The contemporary user-programmable logic devices can 
be categorised generally into two major groups – FLASH-
based Complex Programmable Logic Devices (CPLD) and 
RAM-based Field Programmable Gate Arrays (FPGA) with the 
later being most promising. These integrated circuits abound in 
logic gates which connections can be configured by the user 
and allow for the flexible synthesis of complex circuits. In the 
devices of the first type, the main building block is the 
functional block that comprises a Programmable Logic Array 
(PLA) or Programmable Array Logic (PAL) matrix and a bunch 
of Macrocells (MC) whose core is the D-type flip-flop. The 
devices of the second type contain Look-up Tables (LUT), an 
adder, a D-type flip-flop and several multiplexers, all combined 

in a Configurable Logic Block (CLB) which is repeated in a field 
programmable structure. This organization is depicted in Fig. 1. 

 
Fig. 1. Typical configurable Logic Block (CLB) cell in a FPGA 

 

Besides this FPGAs integrate several single or dual-port 
Block RAMs of few kilobytes each. The above shows that the 
number of registers in an FPGA is limited, while at the same 
time memory cells prevail. 

Finite automata are often used to solve various tasks and 
build complex algorithms to control the execution of processes 
in automation and computer technology in general. Their 
principle of operation will be discussed later. Here it is 
important to mention only that the central place in their 
structure is occupied by the state register, which is essentially 
a memory. To solve a specific task, structures composed of 
several finite state machines (FSM) can be used. Very often 



Годишник на МГУ „Св. Иван Рилски“, Том 65/2022 / Annual of the University of Mining and Geology “St. Ivan Rilski”, Vol. 65/2022 

104 

they can be of the same type but perform different and 
sequential or time-multiplexed tasks. In essence, this principle 
is similar to the multitasking mechanism introduced long ago in 
computer architectures (Hennessy 2012, Muhammad 2020). 
The aim of the present article is to propose a unified approach 
for the repeated use of a computational structure (finite 
automaton) on which the state register is replaced at different 
moments of time, i.e. the contents of the memory. This allows 
reducing the number of flip-flops at the expense of flexible use 
of the built-in Block RAM memory without affecting the 
performance of the algorithm. 
 
 

FSM architectural overview 

 
Finite automata represent an abstract mathematical 

behavioral model of a machine with finite number of states and 
limited memory. There exist three major types of finite state 
automata, namely Medvedev, Moore, and Mealy state 
machine. Their organisation is summarised in Fig. 2. 

 

 
Fig. 2. The three types of finite state automata: (a) Medvedev, (b) 
Moore, and (c) Mealy 

 

It can be seen that the Medvedev FSM (a) is included in all 
other types. The combinational logic that forms the inputs of 
the state register is one and the same for each of the three 
FSM types. Only the logic that forms the outputs differ. 

Mathematically the FSM can be defined by its input 
alphabet X, output alphabet Z, and internal states A (1). 
 

X= {x0 ,x1,x2 ,. ..,xn}  
Z= { z0

,z
1
,z

2
,...,z

m}     (1) 

A= {a0 ,a1,a2 ,...,aw}  
 
One of the states is set as the initial state and it is entered on 
reset. The working algorithm of the FSM is defined by its 
transitions function (2). 
 

Anew=λ(Aold ,X )     (2) 
 
Finally the differing function of the outputs is given by (3) for 
the Moore state machine and by (4) for the Mealy state 
machine. 
 

Z=δ1(A )      (3) 
Z=δ2 ( A,X )      (4) 

 
Of practical interest is the design of deterministic finite state 
automata (DFA) where each of their transitions is determined 
by the state and a letter of the input alphabet; the reading of an 
input character is mandatory for each transition; each state has 
at most one transition at a given input. 

From the given description, which is quite trivial, two 
deductions can be made. First, in some cases it is possible to 
keep the organisational structure of the FSM but only change 
the contents of the memory. Second, it is possible to mix the 
FSM styles (Moore and Mealy) by using two independent 
output functions. 
 
 

Example of the problem 

 

A simplified traffic light controller model can serve as a 
basic example of the problem of using several finite state 
machines that share one and the same functionality. A drawing 
of this model is shown in Fig. 3. 

 
Fig. 3. Simplified traffic light controller model 
 

This model represents two traffic lights that control the 
traffic in North-South (NS) and East-West (EW) directions on a 
crossroad. It has 6 states but for safety reasons, two of them 
are repeated. In state a0 the movement in the NS direction is 
forbidden while the EW direction allows passage. In state a0 
the NS direction is still forbidden while the yellow light is lit for 
the EW direction allowing some time for those who entered the 
crossroad to leave it. In state a2 both NS and EW directions 
are blocked. In state a3 the passage is allowed in the NS 
direction and forbidden in the EW direction. In a4 the yellow 
light is lit for the NS direction allowing those who entered the 
crossroad in this direction to leave it. In the a5 state, both NS 
and EW directions are blocked. Next, the sequence repeats. 

The directed graph of the described algorithm is shown in 
Fig. 4. The main loop is represented with the nodes a0 to a5. 
To make the crossroad even safer a display that shows the 
remaining time is added and it can be different for the different 
traffic light colors. In the graph the timer is represented with the 
hexagonal nodes that contain the number of the remaining 
seconds. This algorithm can be implemented using three 
counters. The first one is responsible for the main loop (the 
states in Fig. 3) and it is counting up. The second one is 
responsible for the time of 59 seconds. This larger time is 



Годишник на МГУ „Св. Иван Рилски“, Том 65/2022 / Annual of the University of Mining and Geology “St. Ivan Rilski”, Vol. 65/2022 

105 

needed for the red/green lights as this is the longest wait time. 
In this mode the counter is counting down. 

 

 
Fig. 4. Directed graph of the simplified traffic light controller 
model 
 

The third counter is also counting in the down direction but 
it is initialized with a smaller time of 5 seconds. 

Although normally the traffic light systems are not designed 
exactly this way, the example clearly demonstrates how similar 
finite state machine models can operate together. Since in this 
case, they work consecutively it becomes obvious that a single 
FSM is sufficient for the task. 

 

Context switching approach 

 
The context switching technique is commonly used in the 

computer architecture domain in which the context or states of 
a process are stored so that they can be restored at a time 
when the processor resumes the execution of the process. 
Context switching is a feature of multitasking, which enables a 
single processor to be shared by multiple processes 
(Hennessy 2012, Muhammad 2020). The same concept can 
be applied at the low level when designing FSM models such 
as the one that was described in the previous chapter. 

The generalised concept of context switching is depicted in 
Fig. 5. 

 
 

Fig. 5. Context switching technique applicable to finite state 
machine modeling 
 

The example in this figure is based on the traffic light 
model but it is valid in the more general case. A comparison 
with Fig. 2 shows that the input logic and the state transitions 

table (equation (2)) remain the same while the contents of the 
state register are changing as it corresponds to distinct 
counting numbers. If replacing the latter functionality with a 
memory an array of values can be created. The exact value 
(memory row) can be stored and fed back to the input logic 
with the aid of a synchronously working pair of input 
demultiplexer and an output multiplexer. Their selector inputs 
are controlled by the switching matrix – a table that contains 
the number of the context. Using the same demultiplexing 
mechanism the output logic functions can also differ between 
each other depending on the context. Despite the fact that 
these functions are purely combinatorial, i.e. they do not 
possess memory, they will never lose their outputs because 
they are connected with the memory array that forms the state 
register. 

For the example of the traffic light controller the up/down 
counter shown in Fig. 6 can be used. It is of a synchronous 
type which guarantees that no cumulative delay in the clock 
chain will be generated. Also this counter supports 
asynchronous reset and load. 

 

 
Fig. 6. An N-bit synchronous up/down counter built using T flip-
flops 
 

Instead of implementing the same circuit at the gate level, 
the behavioural modeling style could be used as it is much 
more versatile. The parameterised Verilog description of the N-
bit synchronous behavioural up-down counter is given in Table 
1. This code allows to easily reconfigure the bit-width of the 
counter without having to redesign it. 
 
Table 1. Parameterised Verilog code of the N-bit synchronous 
behavioural up-down counter 

module cntNbitUpDown #( parameter N = 4 ) ( 
    input                        i_clk, 
    input                        i_rst, 
    input                        i_dir, 
    input                        i_load, 
    input [N-1 : 0]          i_data, 
    output reg [N-1 : 0]  o_cnt); 
     
    always @(posedge i_clk or negedge i_rst or posedge 
i_load) 
        if (~i_rst) 
            o_cnt = 0; 
        else 

            if (i_load) 
                o_cnt = i_data; 
            else 

                if (i_dir) 
                    o_cnt = o_cnt + 1; 
                else 

                    o_cnt = o_cnt - 1; 
endmodule 

 



Годишник на МГУ „Св. Иван Рилски“, Том 65/2022 / Annual of the University of Mining and Geology “St. Ivan Rilski”, Vol. 65/2022 

106 

The parameterised Verilog description of the synchronous 
memory array is given in Table 2. This code allows to change 
the number of address bits and the word size by configuring 
parameters A_SIZE and W_SIZE. 
 
Table 2. Parameterized Verilog code of the memory module 

module mem 

    #( parameter A_SIZE = 4, 
        parameter W_SIZE = 8 ) ( 
    input                            i_clk, 
    input                            i_rst, 
    input [A_SIZE-1 : 0]    addr, 
    input [W_SIZE-1 : 0]   i_data, 
    input                            i_cs, 
    output [W_SIZE-1 : 0] o_data ); 
 
    reg [W_SIZE-1 : 0]    mem    [0 : A_SIZE-1]; 
     
    assign o_data = mem[addr]; 
     
    integer i; 
    always @(posedge i_clk or negedge i_rst) begin 

        if (~i_rst | i_cs) 
            if (~i_rst) 
                for (i = 0; i < (A_SIZE-1); i = i + 1) 
                    mem[i] <= 0; 
            else 

                mem[addr] <= i_data; 
    end 

endmodule 

 
If using the Xilinx (now AMD) Spartan-6 FPGA device, 

compiling this code will infer a properly configured Block RAM 
module (UG383 2011). Its general (unconfigured) overview is 
given in Fig. 7. 

 
Fig. 7. Spartan-6 Block RAM memory can be configured as a 

single-port or dual-port RAM with up to 18 Kb 
 

The Spartan-6 family has a total of 268 blocks of Block 
RAM that can store up to 18K bits of data. It can be used in 
either single-port or dual-port mode having independent bit-
widths in two-port configuration. It is possible to store more 
than one look-up table into a single Block RAM. This can be 
done by using some simple arithmetic for calculating the 
separate memory spaces allocated for each LUT. 

The simulation results for the counter using the described 
context switching approach are given in Fig. 8. 

 
 

Fig. 8. Simulation output demonstrating the context switching 
 

A single counter is used in the proposed algorithm. It can 
be seen that this counter is loaded with different values 
depending on the context. Context 0 is the main loop (nodes 
a0-a5 connected with dashed lines in Fig. 4) in which the 
counter counts up. The current state is stored in the memory 
and after switching the context it is restored back so the 
counter continues from where it stopped. Context 1 
corresponds to the 59-seconds timer and context 2 
corresponds to the 5-seconds timer. The simulation of the 
output functions is not shown in the figure. 

The same approach can be successfully used for other 
purposes. As a brief example in computer architectures the 
interrupt servicing mechanism is using the stack memory which 
is in fact a LIFO (last in, first out) buffer. When servicing an 
interrupt the important register values are put on top of the 
stack. When exiting the interrupt service routine (which is 
simply a sub-program) those values are restored. If using the 
context switching approach a versatile version of a stackless 
interrupt servicing can be implemented. It would allow to jump 
between different subroutines without using the stack, i.e. with 
using priority concurrency. An idea for this is given in Fig. 9. 
 

 
Fig. 9. Stackless interrupt servicing 
 

In (Gorbounov 2022) another example is given. It 
thoroughly discusses an approach for building a high-
performance neural network structure with only a single layer 
of neurons that is based on the switching context method. It 
allows to reduce the total amount of neurons in a neural 



Годишник на МГУ „Св. Иван Рилски“, Том 65/2022 / Annual of the University of Mining and Geology “St. Ivan Rilski”, Vol. 65/2022 

107 

network thus significantly reducing the amount of logic 
resources occupied on the silicon die. In this case the contexts 
are switching between the different weight matrices and the 
matrices of the activation functions. As a result the number of 
physical neural network layers is significantly reduced. 

 
 
Conclusion 

 
Finite automata apparatus is a powerful tool for solving 

different control problems. The rush for increasing the speed of 
control algorithms and reducing the energy consumption at the 
same time poses important optimization challenge. This article 
suggests a possible solution towards solving this contemporary 
task. It is done by using a resource sharing mechanism called 
context switching. It allows to reuse some automata models by 
changing the state values held by the state register which in 
this case is replaced with a memory array. A simplified 
example of a traffic light controller is shown which 
demonstrates the viability of the proposed method. This opens 
a large field for future improvements. 

 
 
 
 

References 
 
Gorbounov Y., H. Chen. 2022. Context-switching neural node 

for constrained-space hardware, EAI CSECS 2022 - EAI 

Conference on Computer Science and Education in 

Computer Science (in print) 
Harris, D., S. Harris. 2013. Digital Design and Computer 

Architecture, 2ed. Morgan Kaufmann Elsevier, ISBN 978-0-

12-394424-5 
Hennessy, J., D. Patterson. 2012. Computer Architecture: A 

Quantitative Approach. Morgan Kaufmann Elsevier, ISBN 

978-8178672663 
Mano M., M. Ciletti. 2018. Digital Design, 6th ed. Pearson, 

ISBN 978-1-292-23116-7 
Muhammad A., X. Jiao, W. Liu, I. Moerman. 2020. CMCVT: A 

Concurrent Multi-Channel Virtual Transceiver. -  

International Journal of Electronics and Communications, 

120, doi.org/10.1016/j.aeue.2020.153230, ISSN 1434-8411 
Palnitkar S. 2003. Verilog HDL, 2nd ed.. Prentice Hall, ISBN 

978-0132599702 
Pavlitov, C., Y. Gorbounov. 2007. Programmable logic in 

electromechanics. Technical University of Sofia, ISBN 978-

954-438-645-0, pp.79-118 (in Bulgarian) 
UG383 v1.5. 2011. Spartan-6 FPGA Block RAM Resources 

User Guide, www.xilinx.com, last accessed 2022/03/01 

 

https://doi.org/10.1016/j.aeue.2020.153230
http://www.xilinx.com/

