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ABSTRACT. The article discusses the question of the natural vibration in a stepped shaft with a transition segment. The test shaft consists of three segments. The
second segment of the shaft is the transition between the first and the third, with a rounded radius. In the process of operation, the shaft acts by its natural vibration.
For their determination, the approximate Reilly method is applied. According to the method a computational scheme is selected and then the load is calculated. A
suitable method for determining displacements in points of the shaft axis is chosen and finally the frequency of the natural vibrations is calculated. According to the
approximate method used, the shaft is modeled as a free beam loaded with vertical forces. Their values are equal to the weights of the individual portions to which
each segment of the shaft is divided. These forces are applied across the widths of the portions selected by the package engineer. To determine the displacements
from the computation scheme, the differential equation of the elastic line is used. The presence of many forces requires application of the method of numerical
integration of the equation. For the transition segment of the stepped shaft, mathematical forms for determining the radii and weights of portions are derived.
Accordingly, an algorithm for calculating their stiffness has been developed. Also, the mathematical forms that define the reaction forces and the bending moments in
the origin of forces of the computational scheme are presented. The expressions for the displacement and the oscillations frequency are given. The presented
solution supplements other existing solutions and helps to calculate more accurately the vibration of the shaft.
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PE3IOME. B cratusata ce pasrnexaa BbMpoCckT 3a COOCTBEHUTE TPENTeHNs, Bb3HMKBALLYM B CTbNAneH Ban ¢ NpexoAeH y4acTbk. M3cneaBaHuaT Ban ce CbCTom OT
TPY y4acTbka. BTOpusT y4acTbk OT Bana ce siBsiBa NPEXOA MeXAy MbpBUS W TPETUS, KaTo € U3MbIHEH CbC 3aKpbriieHe C onpeaeneH paguyc. B npoueca Ha pabota,
BbpXY Bana AencTsar cobCTBEHM TpenTeHus. 3a TAXHOTO onpeaensiHe e NpunoXeH NpubnuanTenHuaT metog Ha Peiinu. CbrnacHo Hero e u3bpaHa uumcnutenHa
cxema v cref, TOBa € M34M1CNeHo HaToBapBaHeTo. /36paH e noaxoasLy MeTo 3a onpeaensiHe Ha NPeMecTBaHNATa B TOYKM OT OCTa Ha Bana 1 Hakpas e U3BbpLLEHO
n34mMcnsBaHe Ha YecToTata Ha cobeTBeHuTe TpenTeHns. CbrnacHo 13nonssaHus NpubnunTeneH MeToa, BanbT Ce MOAenvpa Kkato npocTa rpeda, HaToBapeHa ¢
BepTUKkanHu cunu. CTOMHOCTUTE UM Ca PaBHW Ha TermaTa Ha OTAENHUTE CETMEHTW, Ha KOUTO € pasfieneH BCekW y4acTbk OT Bana. Tesau CUnu ca MpUoXeHu B
cpeanTe Ha n3bpaHuTe OT KOHCTPYKTOPA LUMPUHW Ha CerMeHTUTe. 3a onpefensiHe Ha NPeMecTBaHUsTa OT U3YUCTIMTENHATA CXEMa Ce M3nonaea AndepeHLManHoTo
YpaBHEHME Ha enacTiyHaTa IMHUS. HannumeTo Ha MHOTO CUNM U3NCKBA MpUnaraHe Ha METOfA Ha YMCIIEHO MHTErpupaHe Ha ToBa ypaBHeHNe. 3a NPexoaHNS y4acTbk
Ha CTbNanHWA Ban Ca M3BE[EHW aHanuUTUYHW U3pa3n 3a ONpefensaHeTo Ha paauycuTe U Ternata Ha cermenTute. CbobpasHo TAX e pa3paboTeH anropuTbM 3a
“34mcnsiBaHe Ha kopaBuHIUTE WM. VI3BeaeHM ca 11 aHannUTUYHIUTE 13paau, C KOUTO Ca OnpeaeneHm ONOpHUTE peakLyu 11 OrbBaLLMTe MOMEHTU B NPUMOXHUTE TOYKMA HA
CUNUTe OT M34MCnMTenHaTa cxema. [lafieHn ca u3pasuTe 3a MpemecTBaHWsATa U YectoTaTta Ha cobCTBeHuTe TpenTeHus. MpeAcTaBeHOTO pelueHve [OMbiBa
CbLLECTBYBALYNTE PELLEHNS 11 CTIOMara 3a NMo-TOYHOTO U3YMCIsiBaHe Ha TPEMTEeHWsTa Ha Barna.

KntouoBu AyMu: cobCTBEHN TpenTeHud, CTbnaneH Bas, 4ectoTa Ha cobCTBEHN TpenTeHunsd, I'IpM6J'Il43MTeJ'IeH meTof, AndepeHunanHo ypaBHeHWe Ha enactnyHa
NnHna

Introduction been found in the present work to determine the frequency of
the natural vibrations, occurring in a stepped shaft with a
Most of the shafts used in the industry are stepped. In order transitiqn section. It should be borne in mind that this area is of
to determine their reliability and continuous duty in field small size.
application, it is important to choose a method for their
dimensioning under static and dynamic loads. That is why the -
improvement of the theoretical and numerical methods is a Exposition
constant object of the authorities in this field.
The main objective of the article is to develop an

Classical methods are also applied to the stepped shafts. To approximate method and describe the approach road for its
determine the frequency of its natural vibrations on a stepped application to the stepped shaft with a transitional curvilinear
shaft, an approximate method based on the method of Reilly is segment.

known (Feodosiev, 1965). A full study of this method in a shaft
with a curved section is of interest. After a study, a solution has
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1. Formulation of the problem
A stepped cylindrical shaft with step and geometric
parameters according to Figure 1 (Anchev, 2011) is

investigated. Here 1, 1, and I, are the lengths of the three
sections, I is the radius of the transition zone, D and d are

the diameters of the first and third segment of the relevant
shaft respectively.

l, l, [
Fig. 1. Stepped shaft with a curved segment

2. Method for determination of internal forces
a) Weights of the portions in the individual segments of
the shaft

In order to solve the problem a method is applied (Kisyov,
1965) according to which the shaft is divided into portions of

sized widths Axi,(i =1, 2,3) as shown in Figure 2. For

each portion weights P, are determined, as in the first and

third segment are equal:

P, =Vyy =S,Ax;y = ”RleXﬁ/l

P, =V;y = S;AXy = 7ZR32AX3}/, 1)

where V, and V; are the volumes of portions in the first and
third segments, S, and S, are the areas of their cross

sections, expressed by the radii R1 and R,, and y is the
volumetric weight of the material of the shaft.
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Fig. 2. Computational scheme

For the second curvilinear segment the weights of the
portions are variables:

P2,i :Vz,i7 = Sz,iAXZV = ﬂRzz,iAXﬂ/’ )
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where: V,; are the volumes of the portions in the second
segment; S,; are the areas of the cross portions of the

segments expressed by the radii R2,i .

b) Current radius R, ; in second segment

The initial value of the radius in the second segment R, , is
the sum of the radius of the third segment and the bending
radii (Fig. 3):

R2’0=R3+r. (3)

For a certain value of the arow f, dimensions central angle
is determined, in degrees (Tsikunov, 1970):

0 .
n—'=arcsin1}L. (@)
4 2r
On the other hand, the chord is expressed by the arrow of:
nd
ai:2ficoth' . (5)

The current radius is expressed by the difference between the
initial radius and the current chord:

Roi=Ro0—3. (6)
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Fig. 3. Computational scheme for a second segment
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The diameters and moments of inertia are calculated
according to the expressions:

2

Dy

Jepi =%

Dy =2Ryj; 2

(7)
and then the stiffness EJ . ;.
In the next portion, the arrow accrues with the width:

fi = fi—l + AXZ .

8)

Formulas (3), (4), (5), (6), (7) and (8) are used to calculate
the stiffness of the second segment.

c) Algorithm for determining the stiffness of individual
portions in a second segment

The algorithm for determining the stiffness of individual
portions in the second segment consists of the following eleven
steps:

Step 1 - Enter the values of f,, 1, R, and AX,.

Step 2 — A counter value is set 1 (i=1).
Step 3 - Calculated RZ’O from equation (3).

Step 4 - Calculated Nn; from equation (4).
Step 5 - Calculated @; from equation (5).
Step 6 — The current radius R, ; is calculated from equation

(6).

Step 7 — Check that the current radius is smaller than the
radius in the third section R, and if this is the case, go out of
the cycle. Otherwise, move to the next step.

Step 8 — Calculate the diameter and the moment of inertia of
(7), and then the stiffness EJ ¢, -

Step 9 — The counter is incremented by one.

Step 10 — The new arrow is calculated f; from (8).

Step 11 - Check that the current arrow is larger than the
bending radii. If this is the case, it goes out of the cycle.
Otherwise, go to step 4.

An algorithm description is illustrated with a block diagram
(Figure 4).

d) Determination of the supporting reactions

Consider the partial load computational scheme (Figure 5).
The reaction forces are calculated (Valkov, 2004; Valkov et al.,
2013):

m n ng
1
A= Pliz_l:ail +iz—1: Pidijp + P3iz—1:ai3 2
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n n ng
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Fig. 4. Block diagram of the algorithm for determining the radius R2 i
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Fig. 5. Computational scheme with partial load

In expressions (9) the arms of the forces a;,, @;,, a;;,

a;,, @;5 and a4 are determined by the expressions:
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aj =%+Ax1(i—l); 0<i<n;
AXZ 3 ) . .
ajp = a, +T+Ax2(l—l), 0<i<n,;
ajg =2 +ay +Ax(i-1); 0<i<ng; (10)

ajs =ay +ay +%+Ax3(i—l); 0<i<gn;
ajs = a +%+Ax2(i—l); 0<i<n,;

aig =Axs(i-1); 0<i<n,,

where

ap =MmAXy; ap =NyAXy; ap = N3AXz.
e) Bending moment diagram

The moments in the individual points are determined with the
following expressions (Kisyov, 1978; Valkov, 2011):

M, = —Ab, + PAXS, ; 0<i<n,;
M, = —Bby; + P,AX,S, ; O<i<ng (@
M; = —Ab,; + AX,S, ; 0<i<n,;
where
il i-1 o
S, =2 (i-1i) S, =2 Pi-1]).
j=1 j=1
AX .
b, :Tk by =hb +Ax (i —1); (12)
j=12,3; k=123.

3. Natural vibrations
The slope of the elastic line is determined by integration,
expressed by the sum of (Feodosiev, 1965):

i
* M .
0 = kz ﬁAXk +Cyii=1.n. (13)
1

k

After integrating the expression (13) the displacement to point
i is determined:

i

W, =Y 6 Ax, +Cyx +C, (14)
k=1

In expression (14) Cl and C2 are coefficients which are

determined by the boundary conditions W, (0)=0 and

w,(1)=0, suchas:
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n

D G AX,

C,=00uC, = —k:ll— (15)

The frequency of natural vibration has the form (Kisyov,
1978):

" B'w
S
> R'w

k=1

This determines the frequency of the first iteration of the
approximate method. The forces are calculated according to:

P =R'M- (17)

Here P! is the

i is the value of the force, and W,
displacement from the first iteration.

Proceed with calculating the other parameters of the first
iteration. The resulting solution is compared with that of the
first iteration. The process continues until the results of two

consecutive solutions differ with a predefined error.

4. Key findings

An approach for the application of the approximate method for
a stepped shaft with curved transition segment is described in
the article.

Analytical expressions for the radii and weights of the
portions in the studied transition segment in the stepped shaft
are obtained. According to them an algorithm for calculating
the stiffness of the portions is developed. Typical of this is the
choice of portion width. At a small width, a more accurate
solution is reached. The derived expressions are the
displacements and frequency of the natural vibrations.

The resulting solution is a summary described in (Feodosiev,
1965) approach to the natural frequency of the shaft.

Conclusion

The main advantage of the proposed algorithm is that it gives
an accurate solution to the problem of determining the
frequency of the natural vibrations of a stepped shaft with a
curvilinear segment.

The disadvantage of the method under consideration is the
possibility of a slight influence of the curvilinear segment on the
value of the natural vibrations. This should be checked and
tested on a real shaft, which is the subject of the next team
work.
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