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ABSTRACT. The article discusses the question of the natural vibration in a stepped shaft with a transition segment. The test shaft consists of three segments. The 
second segment of the shaft is the transition between the first and the third, with a rounded radius. In the process of operation, the shaft acts by its natural vibration. 
For their determination, the approximate Reilly method is applied. According to the method a computational scheme is selected and then the load is calculated. A 
suitable method for determining displacements in points of the shaft axis is chosen and finally the frequency of the natural vibrations is calculated. According to the 
approximate method used, the shaft is modeled as a free beam loaded with vertical forces. Their values are equal to the weights of the individual portions to which 
each segment of the shaft is divided. These forces are applied across the widths of the portions selected by the package engineer. To determine the displacements 
from the computation scheme, the differential equation of the elastic line is used. The presence of many forces requires application of the method of numerical 
integration of the equation. For the transition segment of the stepped shaft, mathematical forms for determining the radii and weights of portions are derived. 
Accordingly, an algorithm for calculating their stiffness has been developed. Also, the mathematical forms that define the reaction forces and the bending moments in 
the origin of forces of the computational scheme are presented. The expressions for the displacement and the oscillations frequency are given. The presented 
solution supplements other existing solutions and helps to calculate more accurately the vibration of the shaft. 
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Introduction 
 
   Most of the shafts used in the industry are stepped. In order 
to determine their reliability and continuous duty in field 
application, it is important to choose a method for their 
dimensioning under static and dynamic loads. That is why the 
improvement of the theoretical and numerical methods is a 
constant object of the authorities in this field. 
    
   Classical methods are also applied to the stepped shafts. To 
determine the frequency of its natural vibrations on a stepped 
shaft, an approximate method based on the method of Reilly is 
known (Feodosiev, 1965). A full study of this method in a shaft 
with a curved section is of interest. After a study, a solution has 

been found in the present work to determine the frequency of 
the natural vibrations, occurring in a stepped shaft with a 
transition section. It should be borne in mind that this area is of 
small size. 
 
 
Exposition 
 
   The main objective of the article is to develop an 
approximate method and describe the approach road for its 
application to the stepped shaft with a transitional curvilinear 
segment. 
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1. Formulation of the problem 
   A stepped cylindrical shaft with step and geometric 
parameters according to Figure 1 (Anchev, 2011) is 
investigated. Here 1l , 2l  and 3l  are the lengths of the three 

sections, r  is the radius of the transition zone, D  and d  are 
the diameters of the first and third segment of the relevant 
shaft respectively. 

 
Fig. 1. Stepped shaft with a curved segment 
 
2. Method for determination of internal forces 
) Weights of the portions in the individual segments of 

the shaft 
   In order to solve the problem a method is applied (Kisyov, 
1965) according to which the shaft is divided into portions of 
sized widths , 1, 2,3ix i  as shown in Figure 2. For 

each portion weights iP  are determined, as in the first and 
third segment are equal: 
 

1
2

11111 xRxSVP ,

3
2
33333 xRxSVP ,     (1) 

 
where 1V  and 3V  are the volumes of portions in the first and 

third segments, 1S  and 3S  are the areas of their cross 

sections, expressed by the radii 1R  and 3R , and  is the 
volumetric weight of the material of the shaft. 
 

 
Fig. 2. Computational scheme 
 
   For the second curvilinear segment the weights of the 
portions are variables: 

2
2
,22,2,2,2 xRxSVP iiii ,     (2) 

where: iV ,2  are the volumes of the portions in the second 

segment; iS ,2  are the areas of the cross portions of the 

segments expressed by the radii iR ,2 . 
 
b) Current radius iR ,2  in second segment 

   The initial value of the radius in the second segment R ,2  
is 

the sum of the radius of the third segment and the bending 
radii (Fig. 3): 
 

rRR 3,2 .        (3) 
 
   For a certain value of the arrow if  dimensions central angle 
is determined, in degrees (Tsikunov, 1970): 
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On the other hand, the chord is expressed by the arrow of: 
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cot2
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n

gfa .       (5) 

 
The current radius is expressed by the difference between the 
initial radius and the current chord: 
 

ioi aRR ,2,2 .        (6) 

 
 

Fig. 3. Computational scheme for a second segment 
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   The diameters and moments of inertia are calculated 
according to the expressions: 

ii RD ,2,2 2 ;   
32

2
,2

,2
i

iC
D

J ,      (7) 

 
and then the stiffness iCEJ

2
. 

   In the next portion, the arrow accrues with the width: 
 

21 xff ii .        (8) 
 
   Formulas (3), (4), (5), (6), (7) and (8) are used to calculate 
the stiffness of the second segment. 
 
c) Algorithm for determining the stiffness of individual 
portions in a second segment 
    The algorithm for determining the stiffness of individual 
portions in the second segment consists of the following eleven 
steps: 
Step 1 – Enter the values of 1f , r , 3R  and 2x . 
 
Step 2 – A counter value is set i  ( 1i ). 
Step 3 – Calculated R ,2  from equation (3). 

Step 4 – Calculated o
in  from equation (4). 

Step 5 – Calculated ia  from equation (5). 

Step 6 – The current radius iR ,2  is calculated from equation 
(6). 
 
Step 7 – Check that the current radius is smaller than the 
radius in the third section 3R  and if this is the case, go out of 
the cycle. Otherwise, move to the next step. 
 
Step 8 – Calculate the diameter and the moment of inertia of 
(7), and then the stiffness iCEJ 2 . 
Step 9 – The counter is incremented by one. 
 
Step 10 – The new arrow is calculated if  from (8). 
 
Step 11 – Check that the current arrow is larger than the 
bending radii. If this is the case, it goes out of the cycle. 
Otherwise, go to step 4. 
   An algorithm description is illustrated with a block diagram 
(Figure 4). 
 
d) Determination of the supporting reactions 
   Consider the partial load computational scheme (Figure 5). 
The reaction forces are calculated (Valkov, 2004; Valkov et al., 
2013): 
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Fig. 4. Block diagram of the algorithm for determining the radius

 iR ,2  
 

 
 
Fig. 5. Computational scheme with partial load 
 
   In expressions (9) the arms of the forces 1ia , 2ia , 3ia , 

4ia , 5ia  and 6ia  are determined by the expressions: 
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1
2 1

1
1 ixxai ;   10 ni ; 

1
2 2

2
2 ixxaa Ii ;    20 ni ; 

133 ixaaa IIIi ;   30 ni ;   (10) 

1
2 3

1
4 ixxaaa IIIIIi ;    10 ni ; 

1
2 2

2
5 ixxaa IIi ;   20 ni ; 

136 ixai ;     30 ni , 
 
where 
 

11 xnaI ; 22 xnaII ; 33 xnaIII . 
 
e) Bending moment diagram 
   The moments in the individual points are determined with the 
following expressions (Kisyov, 1978; Valkov, 2011): 
 

1111 SxPbAM ii  ; 10 ni ; 

1333 SxPbBM ii  ; 30 ni ;  (11) 

222 SxbAM ii ;   20 ni ; 
 
where 
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3,2,1j ; 3,2,1k . 
 
3. Natural vibrations 
   The slope of the elastic line is determined by integration, 
expressed by the sum of (Feodosiev, 1965): 
 

1
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After integrating the expression (13) the displacement to point 
i  is determined: 
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In expression (14) 1C  and 2C  are coefficients which are 

determined by the boundary conditions 001w  and 

0lwn , such as: 
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   The frequency of natural vibration has the form (Kisyov, 
1978): 
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This determines the frequency of the first iteration of the 
approximate method. The forces are calculated according to: 
 

g
wPP

I
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II

i

2

.     (17) 

 
Here I

iP  is the value of the force, and iw  is the 
displacement from the first iteration. 
   Proceed with calculating the other parameters of the first 
iteration. The resulting solution is compared with that of the 
first iteration. The process continues until the results of two 
consecutive solutions differ with a predefined error. 
 
4. Key findings 
An approach for the application of the approximate method for 
a stepped shaft with curved transition segment is described in 
the article. 
 
   Analytical expressions for the radii and weights of the 
portions in the studied transition segment in the stepped shaft 
are obtained. According to them an algorithm for calculating 
the stiffness of the portions is developed. Typical of this is the 
choice of portion width. At a small width, a more accurate 
solution is reached. The derived expressions are the 
displacements and frequency of the natural vibrations. 
 
   The resulting solution is a summary described in (Feodosiev, 
1965) approach to the natural frequency of the shaft. 
 
 
Conclusion 
 
   The main advantage of the proposed algorithm is that it gives 
an accurate solution to the problem of determining the 
frequency of the natural vibrations of a stepped shaft with a 
curvilinear segment. 
  
   The disadvantage of the method under consideration is the 
possibility of a slight influence of the curvilinear segment on the 
value of the natural vibrations. This should be checked and 
tested on a real shaft, which is the subject of the next team 
work. 
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