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 are considered with non-negative integer parameters 
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[image: image5.wmf]0

z

=

 of the complex plane 
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. Using the power series descriptions of the commutants of compositions of operators of the type 
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 with different parameters 
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 and 
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 from previous author's papers, here the question about the minimal commutativity (in the sense of (Raichinov 1979)) of compositions is considered.
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 са разгледани с неотрицателни цели параметри 
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 на функциите аналитични в околности на координатното начало 
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 на комплексната равнина 
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. Използвайки описанието чрез степенни редове на комутантите на композиции на оператори от вида 
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 с различни параметри 
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 и 
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 от предишни свои статии, авторът разглежда тук въпроса за минималната комутативност (в смисъл на (Райчинов 1979)).
Introduction
   Let 
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  be the space of functions analytic in (possibly different) neighbourhoods of the origin 
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 of the polynomials of the complex variable 
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 multiplying it by a non-negative power 
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 and then differentiating 
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 times, i.e. we consider the operators of mixed type
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   In (Hristova 2012) the commutational properties of a single operator 
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 in the case 
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 were investigated, and in (Hristova 2013a, 2013b) the case 
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 is presented. Here we will combine the results from these papers to describe the commutants of compositions of operators of the type 
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 with different parameters 
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 and 
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 when they increase or preserve the powers. We will discuss also the question about the minimal commutativity of compositions (in the sense of (Raichinov 1979)).

   Let us represent first the action of only one operator 
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Denoting 
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Now an arbitrary power 
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In order to avoid writing the long products in (4) we will use again a short representation denoting them by one letter:
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and then we can write simply
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In fact, if 
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with 
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 from (5) and (6) and 
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 from (3).

Let us give some definitions:

Definition 1. It is said that a continuous linear operator 
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 commutes with a fixed operator 
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Definition 2. It is said that a continuous linear operator 
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   Obviously every operator 
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 is, in general, not true. Therefore the following definition is natural:

Definition 3. (Raichinov 1979) An operator 
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 is called minimally commutative if 
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   In general we can consider compositions
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 is considered as a multipower.

   In the papers (Hristova 2013c -2013f) the author considers for the sake of simplicity only compositions of two operators
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The description of the commutants of compositions is given there in different cases: when the powers are preserved or increased by both operators and also in the mixed cases when one of the operators increases, while the other one preserves the powers. It is convenient to define the numbers
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which show how each of the operators in the composition changes the powers of the complex variable 
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   In the general case of composition of more than two operators the reasonings are the same but the written form of the results becomes more complicated.

   Let us note that descriptions of commutants are made by many mathematicians. In the references of this paper we have included only a very small part of the publications related to the commutants of operators similar to the one considered here, see all refferences. Additional huge number of publications related to commutants can be found in the bibliographies of the cited monographs.

The case of preserving the powers
Description of the commutant

   The description of the commutant in the case of composition of operators preserving the powers is proved in another paper (Hristova 2013c). The interesting fact is that it remains the same as the one for a single operator given in paper (Hristova 2013a).
Theorem 1.
   Let the operators 
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Then a linear operator 
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where 
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 is an arbitrary sequence of complex numbers, but such that the series in (12) converges.

   For the sake of completeness we will give here only a
Sketch of the proof
   A short expression of the action of either of the two operators 
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Then the action of the composition 
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   If 
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with unknown coefficients 
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If we equate the coefficients of the equal powers in (16) and (17), then
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 Taking into account that 
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  and the form of the coefficients in (13) and (14), we have that 
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This reduces the series in (15) to only one term:
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   Finally, if an arbitrary analytic function 
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which is the desired representation (12).

Minimal commutativity

   First we have to describe the operators generated by 
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and then this description will be compared with the one of the commutant 
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Theorem 2:
   Let us denote for simplicity of the writing the composition (14) and the coefficient in it by one letter
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Then the operators 
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Proof: This follows immediately from the representation the action of the powers 
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   Let us make the definition of the minimal commutativity more precise. One can use two different variants of the definition, namely finite and infinite minimal commutativity 

   If in an algebra 
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If the commutant 
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 contains only elements of the form
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with finite sum, then 
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 is called finitely minimally commutative.

Theorem 3.

   If the operator 
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 defined by (22) is considered in the subspace 
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with zero coefficients 
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   From (26) the action of an arbitrary operator 
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i.e. 
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 is also a polynomial of degree at most 
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Now, equating the coefficients of the equal powers in (27) and (28), we have to solve the linear system with unknowns 
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We can suppose that 
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The determinant of the system is the non-vanishing Wandermonde's one
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since 
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Remark:
We proved Theorem 2 for the subspace 
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, but then a linear system like (29) with infinitely many equations and infinitely many unknowns has to be solved. We cannot give a positive or negative result, but it is at least clear that a representation of the operators of the commutant with finite sum as (26) is impossible in the general case when infinitely many 
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The first 
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 equations have an unique solution 
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i.e. all 
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The case of increasing the powers
   Due to the lack of space we are not able to consider here the case of increasing the powers by the operators in the composition (9) and also in the mixed cases. Let us only mention that the result which will be proved in Part II (Hristova 2013d) of this paper states that

   The composition 
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 is minimally commutative if and only if the total change of the powers is exactly one.
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