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ABSTRACT. In order to produce high-grade copper concentrates, the depression of pyrite, accompanying the copper sulfide minerals has a significant role. In the 
practice of the processing plants, it is most often performed in an alkaline media, using CaO. The subsequent activation of pyrite is usually accomplished by H2SO4, 
which adversely affects the processing equipment. After its treatment with CaO; after subsequent activation by H2SO4, and after mechanical treatment of the 
depressed pyrite, X-ray photoelectron spectroscopy (XPS) for the purpose of studying the surface chemistry of pyrite in its natural state, was performed. Positive 
results were obtained for the possible application of mechanical activation of depressed by CaO pyrite, as a substitute for the aggressive sulfuric acid. 
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РЕЗЮМЕ. Съществено значение за получаването на висококачествени медни концентрати има депресията на пирита, съпътстващ медните сулфидни 
минерали. В практиката на ОФ тя най-често се извършва в алкална среда, с помощта на СаО. При последващата активация на пирита обикновено се 
използва H2SO4, което оказва неблагоприятно въздействие върху съоръженията. Проведена е рентгенова фотоелектронна спектроскопия РФС (x-ray 
photoelectron spectroscopy – XPS), за изучаване на повърхностната химия на пирита в естественно състояние; след третирането му с CaO; след 
последваща активация с H2SO4 и след механична обработка на депресирания пирит. Получени са положителни резултати за възможното прилагане на 
механична активация на депресиран с СаО пирит, като заместител на агресивната сярна киселина.  
 
Ключови думи: повърхностна химия, депресиран пирит, активиран пирит, H2SO4, механична обработка.  

 
Introduction 
 
   In order to produce a high-grade copper concentrate, the 
depression of pyrite, accompanying the copper sulfide minerals 
has a significant role. In the processing plants practice, the 
depression is most often performed in an alkaline medium, 
using lime (CaO). In many cases, a subsequent activation of 
the depressed pyrite is necessary, with the purpose of further 
processing and usually H2SO4 is used as an activator. 
Application of H2SO4 as an activator of the pyrite, has an 
adversely effect on both equipment in the processing plants 
and on the  environment. 
 
   In order to optimize the processes of pyrite processing and 
recovery, one of the main ore minerals in the Chelopech Cu-Au 
deposit, investigations were carried out to determine the 
chemical composition on the surface of the mineral in its 
natural state and after treatment by CaO, subsequent 
activation by H2SO4, and after mechanical treatment of the 
depressed pyrite. The study of surface chemistry of pyrite 
before and after treatment with different reagents and 
subsequent mechanical activation was performed  using X-ray 

photoelectron spectroscopy (XPS). Furthermore, the 
possibilities of applying the mechanical desorption as an 
activator of depressed by CaO pyrite, as a substitute for the 
aggressive sulfuric acid used in practice, was investigated. 

 
Materials and methods 
 
   For the purpose of the conducted examinations, two polished 
square sections (plate), with size 1x1x0.5 cm, cut out of 
massive pyrite ore from the Chelopech Cu-Au deposit were 
prepared. Pyrite plates have the identical mineral composition, 
fine-grained and microporous structure. Optical microscopy in 
reflected light and quantitative X-ray microanalysis was 
performed to determine the chemical composition of the 
mineral and the content of impurities.  
 
   The optical studies of the pyrite polished plates were 
performed using MEIJI MT 9430 polarizing microscope, 
equipped with a DK 3000 digital camera. Quantitative electron 
microprobe analyses were performed to determine the 
chemical composition of pyrite and its inclusions from gangue 
minerals. The analyses were performed using a scanning 
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Table 1.  
Electron probe microanalyses of pyrite 

Analysis 
№ 

Element (wt %) 
 

Fe Cu S ∑ 
1 47.05 - 52.95 100.00 
2 46.44 0.73 52.83 100.00 
3 45.93 1.23 52.85 100.01 
4 45.46 1.40 53.14 100.00 
5 46.33 0.32 53.34 99.99 

 

Crystallo-chemical formulas of pyrite: 
1. Fe1.01S1.99 ; 2. (Fe1.00Cu0.01)1.01S1.99 ; 
3. (Fe0.99Cu0.02)1.01S1.99 ; 4. (Fe0.98Cu0.03)1.01S1.99 ; 
5. (Fe1.00Cu0.01)1.01S1.00 

 
X-ray photoelectron spectroscopy (XPS) 
   X-ray photoelectron spectroscopy is an extremely sensitive 
and non-destructive method for studying the surface chemistry 
of solids, because it allows obtaining information for the 
chemical composition and states from the surface layer with a 
thickness up to 5 nanometers. 

 
   X-ray photoelectron spectroscopy was performed on 
untreated pyrite plate in its natural state and after its 
subsequent treatment with different reagents. 
 

   The registered Fe2p XPS spectra of untreated pyrite and 
after subsequent treatment (Fig. 3) are typical for the mineral 
pyrite (FeS2). The Fe2p spectra has a very strong peak at 707 
eV that is typical for Fe2+ in the crystal lattice of pyrite (Fig. 3) 
(Eggleston et al., 1996; Nesbitt et al., 1998; Derycke et al., 
2013). The S2p peak is located at 162.5 eV and corresponds 
to the disulfide ion (S22-) in the pyrite (FeS2) crystal lattice 
(Chatuverdi et al., 1996; Nesbitt et al., 1998). Some amount of 
isomorphic impurity from Cu, which replaces Fe 2+ in the crystal 
lattice of the mineral, is present due to a low presence of Cu2p 
spectra. These results coincide with the data from the 
performed quantitative electron probe microanalysis of pyrite 
showing the content of structural impurities of Cu, reaching to 
1.4% (Table 1). 
 

   On the surface of the pyrite there is a small amount of iron 
hydroxides – Fe 3+OOH (goethite) (a peak with binding energy 
of 531.5 eV in the O1s spectrum) and iron oxides. The 
presences of sulfate or sulfur have not been found. 

700 720 740

Binding Energy, eV

Fe2p

FeS2

FeS2_CaO

FeS2_CaO_H2SO4

FES2_mechanichal

Fig. 3. Fe (2p) XPS spectra of the pyrite surface before and after 
treatment by CaO, CaO + H2SO4, and after treatment by СаО + 
subsequent mechanical activation 
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Ca2pCaO

Ca(OH)2

 
Fig. 4. Ca (2p) XPS spectrum of the pyrite surface after treatment by CaO 
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CaO

 
Fig. 5. Ca (2p) XPS spectrum of the pyrite surface after treatment by CaO 
+ H2SO4. 
 
   Figures 4 and 5 show the spectra of Ca2p photoelectron line 
of pyrite after CaO treatment as well as subsequent activation 
of the depressed pyrite by H2SO4, respectively. The same 
spectra were compared to the XPS spectrum recorded after 
mechanical activation of CaO depressed pyrite (Fig. 6). 
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Fig. 6. Ca (2p) XPS spectra of the pyrite surface after treatment by CaO, 
CaO + H2SO4, and after treatment by СаО + subsequent mechanical 
activation 
 
   The obtained spectra show that after treatment of pyrite with 
alkaline solution of CaO, a fine coating of CaO and a 
subordinate amount of Ca (OH)2 is found on the surface of the 
mineral (Fig. 4). The presence of CaSO4  is not observed. The 
addition of H2SO4 leads to the dissolution and complete 
removal of Ca (OH)2, leaving a certain amount of CaO, 
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probably in the voids and pores of the pyrite aggregates. (Fig. 
5). After treatment of pyrite by CaO and subsequent 
mechanical activation by attrition, a clean pyrite surface from 
hydrophilic phases is achieved, and only traces of CaO have 
been detected (Fig. 6). 
 
   It should be noted, that after pyrite treatment with an alkaline 
CaO solution, the presence of Mg contained as an impurity in 
the lime used, is observed over the pyrite surface, so for a 
better interpretation of the results, the obtained spectra are 
subjected to deconvolution. 
 
Surface chemistry of pyrite 
   The surface chemistry of pyrite is affected by a number 
factors such as oxidation in air or water, temperature, presence 
of bacteria, concentration of ferric ions Fe3+, particle size, trace 
element content, mechanical activation when milling, etc. 
(Paneva et al., 2007). 

 
   According to Chatuverdi et al. (1996), the surface properties 
of the naturally occurring, cube face of pyrite (100) differ from 
the pyrite surfaces, obtained through mechanical action such 
as mechanical cutting, crushing, grinding. The crystallographic 
orientation of the pyrite cuttings it is also very important. 

 
   It was found that natural pyrite exhibits structural sensitivity 
to oxidation, and the octahedral crystal face (111) show greater 
oxidation potential than pyrite cube crystal face (100) 
(Guevremont et al., 1998). 
 
   Pyrite can be mechanochemically oxidized by intensive 
grinding, since the mechanical activation during milling leads to 
an increase in the specific surface area of the pyrite particles 
and contributes to the formation of hydrophilic phases such 
iron sulfates, iron oxides and hydroxides. 

 
   During the mechanical activation of the pyrite in the initial 
stage, transformation of the mineral into ferrous sulfate 
monohydrate is performed, according to the reaction: FeS2 → 
FeSO4.H2O (szmolnokite) (Paneva et al., 2007). 

 
   Initially, in the first minutes of grinding, ferrous sulfate nuclei 
are formed, which subsequently form a fine layer on the 
activated pyrite surfaces. During long-term grinding, the 
amount of iron sulfate monohydrate formed is increased, as for 
36 minutes about 7.1% FeSO4.H2O is formed (Paneva et al., 
2007). The oxidation of the pyrite in the initial phase is carried 
out by oxidation of the sulfur - S2- tо S6.+. 
 
    In natural environment, pyrite exposed to air and in the 
presence of water is readily oxidized to ferric hydroxide 
Fe(OH)3, according to the following scheme: 
 
 FeS2 + nO2 + mH2O → FeSO4 → Fe2(SO4)3 → Fe(OH)3 + 
H2SO4.  
 
   The ferric hydroxide Fe(OH)3  is deposited as a gel which is 
dehydrated and converted to FeOOH (goethite) and/or other 
iron oxides. 

 
   According to Cai et al., (2009) pyrite oxidized easily in air and 
aqueous media. The oxidized productsthat are formed on the 

pyrite surfaces are different, depending on the pH of the 
medium, and under alkaline conditions Fe3+oxyhydroxides the 
only oxidizing product, which is formed on the pyrite surface. 

 
   The chemical nature of the phases, deposited on the pyrite 
surface during the processes of depression, reactivation and 
flotation of the pyrite, is dependent on a number of factors such 
as: the type of ore grinding (dry or wet), grain size, reagent 
type, pH of the medium, dissolved oxygen content, chemical 
composition and presence of impurities in the pyrite, etc. 

 
   In the processing and flotation of copper ores in the 
processing plants, such as pyrite depressant in alkaline 
conditions, predominantly lime (CaO) is used. It has been 
widely accepted that in alkaline conditions pyrite surfaces are 
mainly covered with hydrophilic species – iron oxides and 
hydroxides – Fe(OH)3, Fe(OH)2 or α-Fe3+OOH (goethite). 
However, studies by some authors show, that in alkaline 
environments on the pyrite surfaces sulfates are often 
deposited - Fe23+(SO4)3 or Fe23+(SO4)3.9H2O (coquimbite) and 
Fe2+SO4 or Fe2+SO4.7H2O (melanterite) (Mermillod-Blondin et 
al., 2005). The ratio Fe2+/Fe3+ on the pyrite surface, depends 
mainly on the pH of the medium and the particle size, 
respectively variations in surface chemistry of the mineral 
particles are observed at different pyrite particle sizes. 
 
   It was found that after dry grinding the spatial distribution of 
oxidation products on the pyrite surfaces is non-uniform. 
Slightly oxidized zones of several nanometers (nm), located 
between zones with a higher degree of oxidation with thickness 
of several tens of nanometers (nm), forming pillar shaped 
aggregates, are observed. Oxidation products with pillar 
structure show heterogeneous composition and are built by 
iron sulfates, hydroxides and hydrated iron oxides (De Donato 
et al., 1993, 1998; Mermillod-Blondin et al., 2005). Hydrated 
ferrous sulfates predominate at the base of the pillars, at the 
top part ferric sulfates dominate, and in the central part there is 
a skeleton of iron hydroxides and hydrated iron oxides. Many 
observations on various oxidized pyrite surfaces have 
confirmed the presence of pillar shaped oxidation products of 
different thickness amid a quasi un-oxidized pyrite surface. 

 
   The published data in the literature for the Ca-bearing 
species, adsorbed onto lime-depressed pyrite surfaces are 
contradictory. The phases Ca(OH)2, СаО, СаСО3, CaSO4 have 
been established by the different authors (Mermillod-Blondin et 
al., 2005). 
 
   According to Xiaojun and Kelebek (2000), the hydrophilic 
phases on the pyrite surfaces after treatment with lime are 
predominantly CaO, CaSO4 and Ca(OH)2, but may also include 
Fe(OH)3. The same authors carried out studies on a pyrite 
fraction of 100-200 mesh (149-74 μm). It was observed that on 
the surface of lime depressed pyrite particles, besides the Ca 
oxide and hydroxide, a certain amount of CaSO4 is deposited 
as a result of the reaction of Ca2+ from the solution with SO42- 

ions from the oxidized pyrite surfaces. The pyrite is easily 
oxidized, with the smaller size of the analyzed pyrite particles 
favoring the oxidation processes. On the other hand, at a 
higher pH of the medium, as a result of oxidation of pyrite the 
deposition of ferric hydroxide Fe (OH)3 is easily achievable. 
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The presence of a fine hydrophilic coating on the pyrite 
reduces the flotation kinetics of the mineral. 
 
   The results of the present studies applying XPS, show a fine 
CaO and Ca (OH)2 coatings on the pyrite surface during the 
treatment of a pyrite plate by CaO (Figure 4). Presence of 
CaSO4 and Fe (OH)3 was not observed. With the mechanical 
activation by attrition, removal of hydrophilic phases on pyrite 
surface could be achieved, and barely traces of CaO being 
recorded. 
 
   The presented studies on pyrite surface chemistry, before 
and after treatment by different reagents, were carried out on 
polished pyrite plates, to limit the possibility of oxidation of the 
mineral in air and liquid media. In real conditions during the 
processing and flotation of copper ores in the processing 
plants, the much smaller size of the pyrite particles and their 
greater specific surface area will contribute to the formation of 
oxidation products on the pyrite particles. The obtained positive 
results related to the use of mechanical treatment as activator 
of depressed by CaO pyrite, can be confirmed by conducting 
semi-industrial experiments, with the aim of applying the 
mechanical activation as a substitute of the commonly used 
sulfuric acid. 
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