UNTIGHT PIPELINE VENTILATION SYSTEMS’ CALCULATIONS

Todor Stefanov
University of Mining and Geology “St. Ivan Rilski”
Sofia 1700, Bulgaria

Elena Vlasseva
University of Mining and Geology “St. Ivan Rilski”
Sofia 1700, Bulgaria
elena@mgu.bg

ABSTRACT
A review of pressure and air volumes in un-tight pipelines predictive methods has been done. Two main approaches, utilized to work out distribution functions for \(h_x \) and \(Q_x \), are compared. Reasons have been given for virtual substitution of integral model with algebraic system of equations for recurrent calculations. Paper presents so-called passports \(R_x-P_x \) for typical characteristics of pipelines. Such approach can avoid repeatable prediction of \(h_x \) and \(Q_x \) under different boundary conditions in calculation sectors. Pressure and air volumes distribution is defined under graphical and polynomial approximation, given in the passports. A comprehensive algorithm for the method, worked out by authors, has been presented. Its application is demonstrated on real examples.

INTRODUCTION
Fan operation in tight pipelines is described by exact mathematical model. The design of such pipeline systems is a routine work. In un-tight pipelines mathematical description is harder due to existence of air leakages towards and from pipes thus forming complex network from mutually interacted transit and filtration flows.

Mine ventilation pipelines are normally un-tight for heavy natural and technological conditions in the process of their construction and maintenance. Two physical models are utilized to describe their un-tightness:

- **Network** (fig. 1) – fixed along the pipeline un-tightness (flanges or other conjunctions);
- **Continuous** (fig. 2) – randomly distributed outlets along the pipeline walls.

Air distribution in such pipelines is described by mass and energy conservation equations, which are solved under following assumptions:

- Turbulent flow mode;
- Non changeable air density;
- Momentum conservation is not affected by filtration;
- Local resistances are taken into account by increased value of friction factor;
- Air resistance of main flow is neglected or added to pipeline friction factor.

![Figure 1. Network model of pipeline](image)

Conservation equations under above written assumptions are as follows:

1. **network distribution** (fig. 1):

\[
\begin{align*}
Q_i &= Q_{i-1} + k_f \sqrt{h_{i-1}} \\
Q_i &= h_{i-1} + r \ell_f Q_i^2
\end{align*}
\]

where: \(i = 1, 2, 3, ..., n; n = L / l_f \) is junction number and its adjoining out flowing branch; \(l_f \) - distance between flanges, m; \(L \) – pipeline length, m.
Quantities \(Q_i \) and \(h_i \) represent air volumes \((\text{m}^3/\text{s}) \) and pressure \((\text{N/m}^2) \) distribution in separate junctions, where \(Q_1 = Q_0; \ h_1 = 0; \ Q_{n+1} = Q_1; \ h_n = h_L \).

2. Continuous distribution (fig. 2):

\[
\begin{align*}
\frac{dQ_x}{dx} &= -k_x \sqrt{h_x} \quad (2a) \\
\frac{dh_x}{dx} &= -r Q_x^2 \quad (2b)
\end{align*}
\]

where \(Q_x \) and \(h_x \) are continuous functions along the transit flow direction \(x \) in boundaries:

\[
Q_x \geq Q_0; \ h_x \geq 0; \ 0 \leq x \leq L.
\]

Functions \(Q_x \) and \(h_x \) are transformed for convenience into \(Q_i \) and \(h_i \) along reciprocate axe \(\ell \) (fig.2), where:

\[
x = L - \ell; \ Q_i \geq Q_{i+1}; \ h_i \geq h_{i+1} \geq 0.
\]

Distribution functions, obtained from solutions of either (1) or (2) can be applied in the following engineering calculations:

- Fan selection under given \(Q_0 \);
- Evaluation of initial air quantity \(Q_0 \) under given fan;
- Location of two or more fans with given characteristics \(h_{f_i} (Q_{f_i}) \) evaluation.

These problems motivated continuous interest in solution of models (1) or (2) and distribution functions evaluation.

DISTRIBUTION FUNCTIONS

Recurrent formulae (1) define exact numerical values of air volumes and pressure \((Q_0, h_0) \) in the simplified model (fig. 1) under following input data - \(L, r, k, h \) and \(Q_0 \). Such approach is applied more than hundred years to solve simple parallel networks. Stefanov T.P., V.V. Tomov, I.S. Velchev (1975) utilized iteration solution under H.Kross method, presenting local ventilation system as a complex diagonal network with ventilation tubes (transit flows), diagonal branches, arbitrary number and place of fans, different resistance factor of branches etc.

Model (2) utilization in mine ventilation is initiated in the works of Loisson R. and J.Ulmo, (1950); Holdsworth J.E., M.A. Pritchard and W.N.Walton, (1951); Voronin B.H., (1956). During the second half of 20th century series of new solutions are published: Simode E., (1976) ; Pawinski J., J. Roszkowski and J.Strzeminski (1979); Robertson R. and P.B.Warton (1980), Browning E.J., (1983); Vutukuri V.S. (1983), Kertikov (1994). This is a stage of analytical treatment of the model and trials for engineering expressions deduction. Different simplifications are applied in the process of solution of (2), leading afterwards to different \(Q_x \) and \(h_x \), in some cases reaching serious deviations from real values. Satisfying results give an integral solution (3), obtained under \(h_x (m) \) approximation:

\[
Q_L = Q_0 + \frac{2 k_x L}{m + 2} \sqrt{h_L (m)}
\]

Voronin’s (1956) formulae are very useful and give good agreement with reality for \(L < 750 \text{ m} \):

\[
h_x = r L Q_0 Q_L ; \ P_L = Q_0 \left(\frac{k_x}{3} \sqrt{r L^3 + 1} \right)^2
\]

Similar is Browning’s E.J. (1983) approach.

Authors of this paper apply sequent iterative integration of (2) to required accuracy via polynomial approximation (Vlasseva 2001). First approximation for \(h_x \) is:

\[
h_x^I = r L Q_0^2 x L
\]

This expression is substituted into (2a), which solution is first approximation for \(Q_x^I \):

\[
\int_0^x dQ_x = -k \int_0^x \sqrt{h_x^I} = Q_x^I
\]

This is a starting point for polynomial approximation, developed by the authors of this paper, namely: \(Q_x \) is approximated by 3-rd degree polynomial (functions \(Q_x \) and \(h_x \) analysis show that such degree polynomial describes very well their behavior):

\[
Q_x^I \approx P_3(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3
\]

This approximation is then substituted into (2b), giving:

\[
\frac{dh_x}{dx} = -r \left(a_0 + a_1 x + a_2 x^2 + a_3 x^3 \right)^2
\]

Above written equation is the second iteration of \(h_x^II \). Numerical values of \(\sqrt{h_x^II} \) are approximated by 3-rd degree polynomial, which polynomial is substituted into (2a):

\[
\frac{dQ_x}{dx} = -k \left(b_0 + b_1 x + b_2 x^2 + b_3 x^3 \right)
\]

Solution of this equation is second iteration for \(Q_x^II \). Iteration procedure continue till preliminary given accuracy is reached, namely, \(10^{-2} \) in regard for \(Q \).

Above described algorithm is transferred into computer code giving distribution functions \(h_x \) and \(Q_x \) under given input data – diameters, filtration factor, required air quantity.
As a result of above described procedure continuous functions for pressure \(h_0 \) and air volumes \(Q_x \) are obtained.

In this way the authors have achieved continuation of R. Loisson \& J. Ulmo's (1950) solution, made analytically till the second iteration and is similar to the approach, applied by Vutukuri V.S. (1983) and Gillies, 1999

Insufficient information from empirical tests of solution to the model (2) lead to results comparison with proven calculation methods.

![Image](Figure 3. Filtration outflows)

MODELS' COMPARISON

Difference between models (1) and (2) comes from filtration inflows determination (fig. 3). In model (1) each outflow is calculated separately by its friction factor \(R_f = 1/k_f \), kg/m³ on the basis of averaged friction factor of holes (pores), located along the pipe wall surface \(\pi \ell_p d \), namely:

\[
R_p = 1/(\ell_p k_x) \quad \text{kg/m³}
\]

and distributed along surface \(k_x \), (m²/kg)¹/². According to (1) and (2) these factors are defined (fig. 3) as ratio between filtration flow \(\Delta Q \) from the hole or from filtration surface to pressure \(\sqrt{h} \) in the pipeline:

\[
k_f = \frac{Q_2 - Q_1}{\sqrt{h_1}} = \frac{Q_{x2} - Q_{x1}}{\sqrt{h_{cx}}} = \frac{\Delta Q_x}{\sqrt{h_{cx}}} \quad \text{(5)}
\]

where: \(h_1 = h_f = R_f \Delta Q_x \) and \(h_{cx} = R_p \Delta Q_x \), while \(h_{cx} \) and \(Q_{cx} \) are integral expressions under (2) for the sector \(\ell_p = \Delta x \) (fig. 3).

Expressions (5) give ground to draw the following conclusions for pipelines with equal diameters \(d_1=d_2 \) and with concentrated and distributed surface filtration:

1. when \(\ell_f \to \ell_p \) and \(k_f \to \ell_p k_x \), functions \(h_1, Q_1 \) are close to \(h_{cx}, Q_{cx} \);

2. best approximation is achieved when \(\ell_f = \ell p \)

3. full coincidence of distribution functions, obtained by the two models could not be achieved due to initial differences in the models – in tight (\(\ell_f \)) and un-tight (\(\ell_p \)) sector, when \(\Delta Q_i < \Delta Q_x \) and \(\Delta h_i > \Delta h_{cx} \);

4. the above unevens become negligible when \(\ell_f = \ell p = \Delta x < 10 \text{ m} \).

Convergence criteria from model (1) to (2) can be presented in the following way:

\[
\ell_f = \ell_p \quad \text{and} \quad k_f = \ell_p k_x \quad \text{(6)}
\]

where distance \(\ell_f \) and factor \(k_f \) are virtual values of \(\ell_f \) and \(k_f \). Under these conditions recurrent calculations made by (1) can be taken into engineering calculations as equivalent to the integral model (2).

Vutukuri V.S. (1983) transforms model (2) into (1) by splitting of air flow in given sector \((\ell_p = \Delta x) \) into two parallel flows – transit in tight pipe \((h = r \ell_p Q_x^2)\) and filtration – conditional pore with resistance \(R_p = 1/(\ell_p k_x) \), equivalent to filtration resistance along sector walls \((h = R_p Q_x^2)\).

Vutukuri A.S. solves the problem by introduction of \(R_x \), into (2), eliminates \(Q_x \), and integrates thus achieved second order differential equation by approximation proposed by Holdsworth et al. (1951):

\[
\left(h_x^3\right)^{1/2} = \left(\frac{r}{R_p}\right)^{1/2} h_x \quad \left(h_x^3\right)^{1/2} = \left(h_{cx}^3\right)^{1/2}
\]

Table 1 presents comparative solutions, obtained by Vutukuri A.S. transformed model (2), Vlasseva E. – polynomial iteration approximation of (2) and virtual model (1). The problem example №3 in Vutukuri A.S. (1983) with the following input data:

<table>
<thead>
<tr>
<th>L</th>
<th>Vutukuri 1983</th>
<th>Vlasseva 2001</th>
<th>Virtual model</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>10.06</td>
<td>247.10</td>
<td>10.06</td>
</tr>
<tr>
<td>500</td>
<td>10.49</td>
<td>1291.71</td>
<td>10.61</td>
</tr>
<tr>
<td>1000</td>
<td>11.74</td>
<td>2813.05</td>
<td>11.74</td>
</tr>
<tr>
<td>1500</td>
<td>13.30</td>
<td>4722.21</td>
<td>13.27</td>
</tr>
<tr>
<td>1840</td>
<td>14.49</td>
<td>6328.30</td>
<td>14.53</td>
</tr>
<tr>
<td>2000</td>
<td>--</td>
<td>7104.30</td>
<td>15.19</td>
</tr>
</tbody>
</table>

Factors \(k_x \) and \(k_f \) are of great importance to the results obtained under (1) or (2). Their real values can be experimentally proved by measurements of \(\Delta Q \) and \(\Delta h \) in

Pipeline junction tightness (k_t) is defined by laboratory modeling and similarity.

Factor k_s results from un-tightness, locate along the whole pipeline length L. Its average value should reflect measured values ΔQ and Δh in comparatively long sector $\Delta L=L_1-L_2$.

When utilizing same technology for tightness achievement and developed turbulence in it, location and length of control section (fig. 3) are chosen based only on accuracy of measurements and representatives of averization. Formulæ for k_s evaluation is obtained on the basis of Q_1-Q_2 under expression (3):

$$k_s = \frac{Q_1 - Q_2}{2\left(\frac{L_2}{m_2+1} - \frac{L_1}{m_1+1}\right)} \left[\frac{m^3/s}{m\sqrt{N/m^2}} \right]$$ \hspace{1cm} (7)

or via integration in boundaries ΔL (fig. 3) when $m=1$ (linear approximation):

$$k_s = \frac{3(2Q_2 - Q_1)(h_2 - h_1)}{2\Delta L\sqrt{h_2^3 - h_1^3}}$$ \hspace{1cm} (8)

For the same purpose can serve expression (4). English equivalent of k_s is $L_c = k_s \cdot 100 \sqrt{1000}$.

Above described measurements and calculations can be used to obtain real values for k_s and resistance R_p,

$$k_s \cdot d_1 = k_s \cdot d_2 \quad \text{or} \quad \frac{R_p}{d_1^2} = \frac{R_p}{d_2^2} \quad \text{or} \quad \frac{R_p}{d_1^2} = \frac{R_p}{d_2^2}$$ \hspace{1cm} (9)

These are criteria for equal pipeline tightness degree dith different diameters. Following indexes can be written: $\varphi_{d_i} = k_s \cdot d$ or $\varphi_{d_i} = L_c \cdot d$ and $R_p = R_{p1}/d_1^2$, in order to compare pipelines in regard to tightness.

Table 2 presents classification based on Vutukuri V.S. (1983) of un-tight pipelines for different diameters but equal tightness conditions k_s and R_p for $\ell=100$ m.

<table>
<thead>
<tr>
<th>d</th>
<th>k_s</th>
<th>R_p</th>
<th>φ_{d1}</th>
<th>φ_{d2}</th>
<th>tightness</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.0002</td>
<td>2500</td>
<td>0.00005</td>
<td>0.158114</td>
<td>400.00</td>
</tr>
<tr>
<td>0.50</td>
<td>0.0002</td>
<td>2500</td>
<td>0.0001</td>
<td>0.316228</td>
<td>1000.0</td>
</tr>
<tr>
<td>0.75</td>
<td>0.0002</td>
<td>2500</td>
<td>0.00015</td>
<td>0.474342</td>
<td>444.4</td>
</tr>
<tr>
<td>1.00</td>
<td>0.0002</td>
<td>2500</td>
<td>0.0002</td>
<td>0.632456</td>
<td>2500.0</td>
</tr>
<tr>
<td>2.00</td>
<td>0.0002</td>
<td>2500</td>
<td>0.0004</td>
<td>1.264912</td>
<td>625.0</td>
</tr>
<tr>
<td>5.00</td>
<td>0.0002</td>
<td>2500</td>
<td>0.001</td>
<td>3.162280</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Reflecting pipe diameter, i.e. filtration surface $F=\ell \cdot d$ and aero dynamical leakage conditions. When filtration intensity in equal by length sectors ($\ell_{p1} = \ell_{p2}$) with different diameters ($d_1 \neq d_2$) is equal ($\text{FILQ}_1 = \text{FILQ}_2$), the following expressions are obtained:

$$k_s \cdot d_1 = k_s \cdot d_2 \quad \text{or} \quad \frac{R_p}{d_1^2} = \frac{R_p}{d_2^2}$$ \hspace{1cm} (9)

Tight factors of E. Simode (1976) and Pawinski (1979) are for coefficient k_x and refer to equal pipelines diameters.
Main purpose in design process of pipeline ventilation systems is to achieve advisable air flows and pressure distribution for variety of facilities and boundary conditions such as: length of pipeline (L), length of sectors (∆L) and composition tubes (i); diameters and resistances (d,r); degree of tightness (k_x, k_r); number, location (i) and fans’ pressure characteristics (h_F-Q_F), different Q_0 etc. Calculations are conducted for each subset of data by utilization of distribution functions Q_i and h_i or Qx and hx, obtained either under (1) or (2).

Such repeatable calculations can be avoided by application of specific characteristics for the pipeline Rx and Px, which depend only on its length (x), friction (f) and filtration (R_or Rp) factors:

\[R_x = \frac{h_x}{Q_x^2} = R(x; r, k) \] \hspace{1cm} (10)

\[P_x = \frac{Q_x}{Q_0} = p(x, r, k) \] \hspace{1cm} (11)

Functions (10) and (11) are developed once by solution of (1) or (2) for arbitrary L and Q_0 (for instance L=2000 m Q_0 =1 m^2/s). They are permanent characteristic (passport) for the taken pipeline (r, kx or kf). Catalogue of R-P passports and corresponding h_F(Q_F) fan characteristics give sufficient information for engineering calculations in un-tight ventilation systems. Table 3 presents R-P passports for two widely used pipelines with three degrees of tightness. Figures 4a and 4b show in graphical way resistance and air supply coefficients for d=80 cm and r=0.06. Polynomials, approximating these characteristics for the two pipelines with three types of tightness are shown under the graph.

Table 3. P-R passports for two pipelines with different degrees of tightness

<table>
<thead>
<tr>
<th>x</th>
<th>R</th>
<th>P</th>
<th>R</th>
<th>P</th>
<th>R</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>200</td>
<td>1.00</td>
<td>11.93</td>
<td>1.02</td>
<td>11.67</td>
<td>1.05</td>
<td>11.35</td>
</tr>
<tr>
<td>400</td>
<td>1.01</td>
<td>23.65</td>
<td>1.06</td>
<td>22.33</td>
<td>1.13</td>
<td>20.89</td>
</tr>
<tr>
<td>600</td>
<td>1.02</td>
<td>35.01</td>
<td>1.12</td>
<td>31.54</td>
<td>1.25</td>
<td>28.05</td>
</tr>
<tr>
<td>800</td>
<td>1.04</td>
<td>45.96</td>
<td>1.19</td>
<td>39.24</td>
<td>1.40</td>
<td>33.13</td>
</tr>
<tr>
<td>1000</td>
<td>1.05</td>
<td>56.47</td>
<td>1.27</td>
<td>45.88</td>
<td>1.57</td>
<td>36.68</td>
</tr>
<tr>
<td>1200</td>
<td>1.07</td>
<td>66.51</td>
<td>1.36</td>
<td>50.80</td>
<td>1.78</td>
<td>39.20</td>
</tr>
<tr>
<td>1400</td>
<td>1.09</td>
<td>76.11</td>
<td>1.47</td>
<td>55.10</td>
<td>2.02</td>
<td>41.03</td>
</tr>
<tr>
<td>1600</td>
<td>1.11</td>
<td>85.23</td>
<td>1.58</td>
<td>58.59</td>
<td>2.30</td>
<td>42.34</td>
</tr>
<tr>
<td>1800</td>
<td>1.13</td>
<td>93.88</td>
<td>1.71</td>
<td>61.37</td>
<td>2.62</td>
<td>43.23</td>
</tr>
<tr>
<td>2000</td>
<td>1.15</td>
<td>101.97</td>
<td>1.85</td>
<td>63.44</td>
<td>2.99</td>
<td>43.70</td>
</tr>
</tbody>
</table>

ENGINEERING CALCULATIONS

One fan in pipeline

Pipeline and fan are set by their specific characteristics \(R - P \) and \(h_F (Q_F) \). Calculations are performed for the whole pipeline length, divided into separate sectors \(\Delta L \) (fig. 6), thus defining junctions \(i \) – fans’ location and place of intermediate calculations. To each of such junction are tied down sector’s growths of \(\Delta R \) and \(\Delta P \) along the axes \(X \) and \(\ell \).

When fan is installed at the beginning (\(x = 0; \ell = L \)) of transit flow (fig. 5), it operated in compressed regime along the whole pipeline length. On the contrary, when it is installed at the end of pipeline (\(x = L; \ell = 0 \)), its action is forced. Air current parameters in both cases are equal, but with opposite meaning. Air resistance overcome equals to \(R_x \), filtration is one directional \(+FILQ_x\ or \(-FILQ_x\) and maximal, no re-circulation is presented \((RECQ=0) \). Водеща цел на проекта е да осигури достатъчно Project’s main goal is to ensure required air volume for the ventilated object \(Q_0 \), predefined or calculated in advance on limiting factors.

Aero-dynamical calculations for such system are performed in two ways:

- under required \(Q_0 \) work regime of fan is evaluated by the following expressions:

\[Q_v = Q_L = Q_o P_o \quad \text{and} \quad h_F = h_L = R_L Q_0^2 \] \hspace{1cm} (12)

- fan or fan aggregate is selected \(h_F (Q_F) \) and its resulting regime under \(R_L \) and air volumes distribution are then evaluated by the system of equations:

\[h_F (Q_F) \quad \text{and} \quad R_L Q_L^2 \] \hspace{1cm} (13)

\[Q_o = Q_L / P_L \quad \text{and} \quad h_i = R_i Q_i^2 \] \hspace{1cm} (14)

In case obtained value of \(Q_0 \) is inacceptable, solution is repeated with other fan or pipeline.
In case fan is located along the transit current (fig. 5), two pressure zones are formed in the pipeline: forced by \(x \) and compressed by \(l \) with corresponding filtration \((+ FILQ_x \text{ and } -FILQ_l)\) and re-circulation \((RECQ_{x, l})\).

Aero-dynamical pipeline resistance is divided into two independent branches \(R_{ix} \) and \(R_{il} \), where:

\[
R_{i} = R_{ix} + R_{il} ; \quad h_i = R_{i}Q_i^2
\]

Fan work regime \((h_i, Q_i)\) is evaluated under (15), while pressure and air volumes distribution – on the expressions written below:

\[
Q_{ax} = Q_i / P_{ix}, \quad h_{ix} = R_{ix}Q_i^2
\]

\[
Q_{al} = Q_i / P_{il}, \quad h_{il} = R_{il}Q_i^2
\]

The above described calculations are repeated for the selected \(R - P \) pipeline for \(L = L_{\text{max}} \) and for \(L < L_{\text{max}} \).

In this way need for one or more fans for pipeline installation construction and maintenance is estimated. Calculations might be repeated with other input data in case results doesn’t satisfy either by technological or by economical reasons.

![Figure 5. Fan in the beginning of pipeline](image)

Two and more fans in the pipeline

Normally one of the fans is installed at one end of the pipeline – compressed along \(x \) or forced along \(l \) (fig. 6). The rest of them are located along the air current. Their interaction is evaluated by summing up their individual functions \(h_{ix} \) and \(h_{il} \) for each pipeline junction:

\[
\overline{h}_i = \sum h_{ix} - \sum h_{il}
\]

and by re-calculation of resulting air flow:

\[
\overline{Q}_i = \sqrt{\overline{h}_i / R_i}
\]

Resulting values \(\overline{h}_i \) and \(\overline{Q}_i \) describe pressure and air volumes variation along the transit flow direction (fig. 6).

Function \(\overline{h}_i \) forms behind each fan junction with one of the following pressure:
- \(N \) – null \((\overline{h}_i = 0)\);
- \(K \) – compressed \((\overline{h}_i > 0)\);
- \(D \) – depressed \((\overline{h}_i < 0)\);

Function \(\overline{Q}_i \) describes continuity of transit air current - descending by \(x \) and ascending by \(l \).

Between two adjacent junctions N-N zone is formed, where pressure loss is restored only by fan located within. Zone N-N parameters result from individual regime of this fan \((R_i, P_i, h_i, Q_i)\).

Compression in junction \(K \) defines the degree of sequential aggregating of interacting fans. Increase in the distance between them lead to appearance of junction N and then to D. Decrease in distance between fans lead to increase of compression to 100% (fans operate in one junction consecutively).

Depression sector N-D causes re-circulation in the pipeline, which should be avoided by default. It can be reduced and overcome by decreasing of distance between interacting fans.

![Figure 6. Two and more fans](image)

Desired operation of given (available) fans is searched through variant calculations in order to find the best distance between fans.

Ventilation system without re-circulation is achieved assuming N-N scheme under required \(Q_0 \) (fig. 6) by the following procedure:
- Maximal pipeline length \(L \) is divided into sectors \(\Delta L_i \).
- Under required at the end of transit flow value \(Q_0 \) functions \(h_i \) and \(Q_i \) are evaluated either by \(P_i \), \(R_i \), passport or under solution of (2).
- Selection of Fan \(N \) (of fan aggregate composed from smaller fans) is performed for the first N-N zone, which include several sectors. Thus selected fans should satisfied sectors' characteristics \(h_i ; Q_i \) for each pipeline lengthen. This could be achieved by increase of motor rotation or change of fans' blades angle.
- In the same way next fans (aggregates) \(N_2 \), \(N_3 \) etc. are selected for the following zones with required air quantity \(Q_0 \).
equals to fan operation efficiency in the preceding zone
\(Q_{02} = Q_1, \quad Q_{03} = Q_2 \) etc.

- Project N-N should be achieved with 5-10% increase of calculated fan pressure for fans №2, №3 etc., which ensures reserves for avoiding re-circulation sectors. presents numerical solution for 2000 m pipeline, composed from two consecutive sectors with characteristics written below:

\[
\Delta L_1 = 1000; d_1 = 80; r = 0.060; k_s = 0.0001 \\
\Delta L_2 = 1000; d_2 = 100; r = 0.020; k_s = 0.0001
\]

Final stage of designed forced ventilation system is shown on the figure. Fans selected are one type with possible changing of their blades’ angel:

\((F_1, \beta = 15^\circ; F_2, \beta = 25^\circ; F_3, \beta = 30^\circ)\).

Intermediate stages (regimes) after each pipeline lengthen are shown at each \(\Delta L = 250\, m\). Total theoretical fans’ power equals to 202.36 kW.

CONCLUSION

Comparative calculations for typical un-tight pipelines are performed based on known solutions and approaches. They give ground for the following conclusions and achievements:

- Computer program calculating distribution functions \(h_x \) and \(Q_x \) is developed. It reflects algorithm based on consecutive polynomial approximation and integration of (2);
- By utilization if the above described program passports for two types of pipelines with characteristic parameters are created and presented in graphical and numerical way;
- Numerical algorithm for “un-tight pipeline – fans” ventilation system design is presented which allows to optimize types and fans location.

REFERENCES

Loisson R., J.Ulmo, 1950. Determination des caracteristiques des canalisations d’aerage secondaire. Rev. de L’industrie Min...

Vlasseva E., T.P. Stefanov, 2001, Complex evaluation of auxiliary ventilation system parameters, 9th Mine Ventilation Congress, Krakow, Poland, p

Recommended for publication by Department of Mine ventilation and occupational safety, Faculty of Mining Technology