ON THE EQUIVALENCE OF DIFFERENTIAL SYSTEMS ARISING IN ELECTROMAGNETIC TWO-BODY PROBLEM

Lubomir Georgiev
University of Mining and Geology "St. Ivan Rilski"
Sofia 1700, Bulgaria

Vasil Angelov
University of Mining and Geology "St. Ivan Rilski"
Sofia 1700, Bulgaria

SUMMARY
The equivalence of two systems of equations of motion arising in electromagnetic two-body problem is obtained.

In the present note we consider two systems of equations of motion arising in electromagnetic two-body problem (Synge, 1940; Synge, 1960) and formulated in (Angelov, 2002).

First we recall some denotations and results from (Angelov, 2002; Angelov, 2000) concerning J. L. Synge's equations of motion

As in (Synge, 1940) we denote by

\[x^{(p)}(t) = (x_1^{(p)}(t), x_2^{(p)}(t), x_3^{(p)}(t), x_4^{(p)}(t)) = itc \]

\(p = 1, 2 \), \(t^2 = -1 \) the space-time coordinates of the moving particles, by \(m_p \) - their proper masses, by \(e_p \) - their charges, \(c \) - the speed of the light. The coordinates of the velocity vectors are

\[u^{(p)} = (u_1^{(p)}(t), u_2^{(p)}(t), u_3^{(p)}(t), u_4^{(p)}(t)) \quad (p = 1, 2) \].

The coordinates of the unit tangent vectors to the world-lines are

\[\gamma^{(p)} = \frac{\gamma^{(p)}(t)}{c} = \frac{u^{(p)}(t)}{c} \quad (\alpha = 1, 2, 3), \quad \gamma^{(p)} = itc \quad (p = 1, 2) \].

where

\[\gamma_p = \left(1 - \left(\sum_{\alpha=1}^{3} u^{(p)}_{\alpha}(t) \right)^2 \right)^{-\frac{1}{2}}, \quad \Delta_p = \left(\sum_{\alpha=1}^{3} u^{(p)}_{\alpha}(t) \right)^2 \].

It follows \(\gamma_p = c / \Delta_p \).

By \(< , >_4 \) we denote the scalar product in the Minkowski space, while by \(< , >_3 \) - the scalar product in 3-dimensional Euclidean subspace. Synge's equations of motion modeling the interaction of two moving charged particles are the following:

\[m_p \frac{dx^{(p)}(t)}{ds_p} = \frac{e_p}{c^2} F_{(p)}^{(p)} \delta^{(p)}(r) \quad (r = 1, 2, 3, 4) \quad (1) \]

where the elements of proper time are

\[ds_p = \frac{c}{\gamma_p} \Delta_p dt = \Delta_p dt \quad (p = 1, 2) \].

Recall that in (1) there is a summation in \(n \) \((n = 1, 2, 3) \).

The elements \(F_{(p)}^{(p)} \) of the electromagnetic tensors are derived by the retarded Lienard-Wiecerd potentials

\[A_\alpha^{(p)} = -\frac{e_p}{\gamma^{(p)}(t)} \frac{\delta^{(p)}(r)}{\xi^{(p)q}} \quad (r = 1, 2, 3, 4) \], that is

\[F_{(p)}^{(p)} = \frac{\partial A^{(p)}_{\alpha}}{\partial x^{(p)}_\alpha} - \frac{\partial A^{(p)}_{\alpha}}{\partial x^{(p)}_\beta} \xi^{(pq)} \]

By \(\xi^{(pq)} \) we denote the isotropic vectors (cf. Synge, 1940; 1960) drawn into the past:

\[\xi^{(pq)} = (x_1^{(p)}(t) - x_1^{(q)}(t - \tau_{pq}(t)), \quad x_2^{(p)}(t) - x_2^{(q)}(t - \tau_{pq}(t)), x_3^{(p)}(t) - x_3^{(q)}(t - \tau_{pq}(t)), x_4^{(p)}(t) - x_4^{(q)}(t - \tau_{pq}(t)), itc \tau_{pq}(t)) \]
where \(\xi^{(p,q)}(\xi^{(p,q)}) \) for \(p \) or
\[
\tau_{pq}(t) = \left(\frac{1}{\gamma_p} \sum_{\beta=1}^{d} \left[\chi^{(p)}_\beta(t) - \chi^{(q)}_\beta(t - \tau_{pq}(t)) \right]^2 \right)^{\frac{1}{2}}
\]
\(((pq) = (12), (21)) \).

Calculating \(F^{(p)}_n \) as in (Angelov, 1990) we write equations from (2) in the form:
\[
d\alpha(p)_d = \frac{\partial (\xi^{(p)}(\alpha^{(p)}))}{\partial s_d} \left[\xi^{(p)}(\xi^{(p)}) \right]_{d} - \xi^{(q)}(\xi^{(p)}) \left[\xi^{(p)}(\xi^{(p)}) \right]_{d} \frac{1}{\gamma_d} + \left[\xi^{(p)}(\xi^{(p)}) \right]_{d} \frac{\partial (\xi^{(p)}(\xi^{(p)}))}{\partial q_d} \left[\xi^{(p)}(\xi^{(p)}) \right] d_q - \left[\xi^{(p)}(\xi^{(p)}) \right]_{d} \frac{\partial (\xi^{(p)}(\xi^{(p)}))}{\partial q_d} \left[\xi^{(p)}(\xi^{(p)}) \right]_{d}
\]
\(\alpha = 1, 2, 3 \) (2.2)

\[
d\alpha(p)_d = \frac{\partial (\xi^{(p)}(\alpha^{(p)}))}{\partial s_d} \left[\xi^{(p)}(\alpha^{(p)}) \right]_{d} - \xi^{(q)}(\alpha^{(p)}) \left[\xi^{(p)}(\alpha^{(p)}) \right]_{d} \frac{1}{\gamma_d} + \left[\xi^{(p)}(\alpha^{(p)}) \right]_{d} \frac{\partial (\xi^{(p)}(\alpha^{(p)}))}{\partial q_d} \left[\xi^{(p)}(\alpha^{(p)}) \right] d_q - \left[\xi^{(p)}(\alpha^{(p)}) \right]_{d} \frac{\partial (\xi^{(p)}(\alpha^{(p)}))}{\partial q_d} \left[\xi^{(p)}(\alpha^{(p)}) \right]_{d}
\]
\(\alpha = 1, 2, 3 \) (3.1a)

where \(\tau_{pq}(t) = \left(\frac{1}{\gamma_p} \sum_{\beta=1}^{d} \left[\chi^{(p)}_\beta(t) - \chi^{(q)}_\beta(t - \tau_{pq}(t)) \right]^2 \right)^{\frac{1}{2}} \)

\[
\frac{d\alpha(p)}{ds_d} = \frac{\partial (\xi^{(p)}(\alpha^{(p)}))}{\partial s_d} \left[\xi^{(p)}(\alpha^{(p)}) \right]_{d} - \frac{1}{\gamma_d} + \left[\xi^{(p)}(\alpha^{(p)}) \right]_{d} \frac{\partial (\xi^{(p)}(\alpha^{(p)}))}{\partial q_d} \left[\xi^{(p)}(\alpha^{(p)}) \right] d_q - \left[\xi^{(p)}(\alpha^{(p)}) \right]_{d} \frac{\partial (\xi^{(p)}(\alpha^{(p)}))}{\partial q_d} \left[\xi^{(p)}(\alpha^{(p)}) \right]_{d}
\]
\(\alpha = 1, 2, 3 \) (3.1a)

where \(\gamma_{pq} = \frac{1}{c^2} \sum_{\alpha=1}^{d} \left[\xi^{(q)}_{\alpha}(t - \tau_{pq}(t)) \right]^2 \),
\(\Delta_{pq} = \left[c^2 - \sum_{\alpha=1}^{d} \xi^{(q)}_{\alpha}(t - \tau_{pq}(t)) \right]^2 \) and
\[
\left[\xi^{(p)}(\alpha^{(p)}) \right]_{d} \frac{\partial (\xi^{(p)}(\alpha^{(p)}))}{\partial q_d} \left[\xi^{(p)}(\alpha^{(p)}) \right]_{d} + \frac{1}{\gamma_d} \left[\xi^{(p)}(\alpha^{(p)}) \right]_{d} \frac{\partial (\xi^{(p)}(\alpha^{(p)}))}{\partial q_d} \left[\xi^{(p)}(\alpha^{(p)}) \right]_{d}
\]
\(\alpha = 1, 2, 3 \) (3.1a)

where \(\tau_{pq}(t) = \left(\frac{1}{\gamma_p} \sum_{\beta=1}^{d} \left[\chi^{(p)}_\beta(t) - \chi^{(q)}_\beta(t - \tau_{pq}(t)) \right]^2 \right)^{\frac{1}{2}} \)

\[
\frac{d\alpha(p)}{ds_d} = \frac{\partial (\xi^{(p)}(\alpha^{(p)}))}{\partial s_d} \left[\xi^{(p)}(\alpha^{(p)}) \right]_{d} - \frac{1}{\gamma_d} + \left[\xi^{(p)}(\alpha^{(p)}) \right]_{d} \frac{\partial (\xi^{(p)}(\alpha^{(p)}))}{\partial q_d} \left[\xi^{(p)}(\alpha^{(p)}) \right] d_q - \left[\xi^{(p)}(\alpha^{(p)}) \right]_{d} \frac{\partial (\xi^{(p)}(\alpha^{(p)}))}{\partial q_d} \left[\xi^{(p)}(\alpha^{(p)}) \right]_{d}
\]
\(\alpha = 1, 2, 3 \) (3.1a)

where \(\gamma_{pq} = \frac{1}{c^2} \sum_{\alpha=1}^{d} \left[\xi^{(q)}_{\alpha}(t - \tau_{pq}(t)) \right]^2 \),
\(\Delta_{pq} = \left[c^2 - \sum_{\alpha=1}^{d} \xi^{(q)}_{\alpha}(t - \tau_{pq}(t)) \right]^2 \) and
\[
\left[\xi^{(p)}(\alpha^{(p)}) \right]_{d} \frac{\partial (\xi^{(p)}(\alpha^{(p)}))}{\partial q_d} \left[\xi^{(p)}(\alpha^{(p)}) \right]_{d} + \frac{1}{\gamma_d} \left[\xi^{(p)}(\alpha^{(p)}) \right]_{d} \frac{\partial (\xi^{(p)}(\alpha^{(p)}))}{\partial q_d} \left[\xi^{(p)}(\alpha^{(p)}) \right]_{d}
\]
\(\alpha = 1, 2, 3 \) (3.1a)
\[\frac{1}{A_2} \Delta_2 \mathbf{u}(t_2) + \int_0^{t_2} \Delta_2(t) \mathbf{u}(t) dt = \mathbf{q}(t_2) \]

\[\Delta_2 = \frac{\mathbf{u}(t_2) - \mathbf{u}(t_1)}{t_2 - t_1} \]

We note that the delay functions \(\tau_{pq}(t) \) satisfy functional equations \((*)\) for \(t \in (-\infty, \infty) \). For \(t \leq 0 \) \(u_{\alpha}^{(p)}(t) \) are prescribed functions: \(u_{\alpha}^{(p)}(t) = \pi_{\alpha}^{(p)}(t), t \leq 0 \), where \(\pi_{\alpha}^{(p)}(t) = \frac{dx_{\alpha}^{(p)}(t)}{dt} \), \(t \leq 0 \).

This means that for prescribed trajectories \((x_1^{(1)}(t), x_2^{(1)}(t), x_2^{(2)}(t), x_3^{(1)}(t), x_3^{(2)}(t), x_3^{(3)}(t)) \) for \(t \leq 0 \) one has to find trajectories, satisfying the above system of equations for \(t > 0 \).

We recall \(x_{\alpha}^{(p)}(t) = x_{\alpha}^{(p)}(0) + \int_0^t u_{\alpha}^{(p)}(s) ds \), where \(x_{\alpha}^{(p)}(0) \) are the coordinates of the initial positions.)

Kepler problem in polar coordinates

In what follows we consider plane motion in \(Ox_2x_3 \) coordinate plane for above equations. We suppose that the first particle \(P_1 \) is fixed at the origin \(O(0,0,0) \), that is,

\[P_1: \begin{cases} x_1^{(1)}(t) = 0, \\ x_2^{(1)}(t) = 0, \quad t \in (-\infty, \infty), \\ x_3^{(1)}(t) = 0 \end{cases} \]

It follows by necessity \(x_2^{(2)}(t) = 0 \), \(x_3^{(2)}(t) = 0 \).

Passing to the polar coordinates we can put

\[P_1: \begin{cases} x_1^{(2)}(t) = \rho(t) \cos \phi(t), \\ x_2^{(2)}(t) = \rho(t) \sin \phi(t) \end{cases} \]

After transformations made in (Angelov, 2000) we obtain the following second order system:

\[\frac{d}{dt} \left(\begin{array}{c} \xi^{(1)} \\ \xi^{(2)} \end{array} \right) = \left(\begin{array}{c} \rho(t) \xi^{(1)}(t) \\ \rho(t) \xi^{(2)}(t) \end{array} \right) - \left(\begin{array}{c} \xi^{(1)}_0 \\ \xi^{(2)}_0 \end{array} \right) \]

\[\left(\begin{array}{c} \xi^{(1)}_0 \\ \xi^{(2)}_0 \end{array} \right) = \left(\begin{array}{c} \rho_0 \cos \phi_0 \\ \rho_0 \sin \phi_0 \end{array} \right) \]

for \(t > 0 \) and initial conditions

\[\rho(0) = \rho_0, \phi(0) = \phi_0 \]

On the other hand, beginning with the original form of Syngue equations (Angelov, 2002) we obtain for Kepler problem the following equations of motion:

\[\frac{d}{dt} \left(\begin{array}{c} \gamma_2^{(1)}(t) \\ \gamma_2^{(2)}(t) \end{array} \right) = \left(\begin{array}{c} \rho_0 \gamma_2^{(1)}(t) \\ \rho_0 \gamma_2^{(2)}(t) \end{array} \right) \]

\[\left(\begin{array}{c} \rho_0 \gamma_2^{(1)}(t) \\ \rho_0 \gamma_2^{(2)}(t) \end{array} \right) = \left(\begin{array}{c} \rho_0 \cos \phi_0 \\ \rho_0 \sin \phi_0 \end{array} \right) \]

But \(\xi^{(2)}_0 = (0, \rho(t) \cos \phi(t), \rho(t) \sin \phi(t)) \). Then integrating \((5) \) from 0 to \(t \) we have

\[\gamma_2^{(1)}(t)u_\alpha^{(2)}(t) - \gamma_2^{(2)}u_\alpha^{(2)}(0) = \frac{\rho_0}{2} \int_0^t \left(\begin{array}{c} \frac{\xi^{(2)}_0}{\rho_0} \cos \phi_0 - \rho_0 \phi_0 \sin \phi_0 \\ \phi_0 - \cos \phi_0 \end{array} \right) ds \]

\[\left(\begin{array}{c} \frac{\rho_0}{2} \cos \phi_0 - \rho_0 \phi_0 \sin \phi_0 \\ \phi_0 - \cos \phi_0 \end{array} \right) \]

\[\left(\begin{array}{c} \frac{\rho_0}{2} \cos \phi_0 - \rho_0 \phi_0 \sin \phi_0 \\ \phi_0 - \cos \phi_0 \end{array} \right) \]

\[\left(\begin{array}{c} \rho_0 \cos \phi_0 - \rho_0 \phi_0 \sin \phi_0 \\ \phi_0 - \cos \phi_0 \end{array} \right) \]

\[\gamma_2^{(1)} = \frac{\rho_0}{2} \left(\begin{array}{c} \cos \phi_0 - \rho_0 \phi_0 \sin \phi_0 \\ \phi_0 - \cos \phi_0 \end{array} \right) \]

\[\gamma_2^{(1)}(t)u_\alpha^{(2)}(t) - \gamma_2^{(2)}u_\alpha^{(2)}(0) = \frac{\rho_0}{2} \int_0^t \left(\begin{array}{c} \frac{\xi^{(2)}_0}{\rho_0} \cos \phi_0 - \rho_0 \phi_0 \sin \phi_0 \\ \phi_0 - \cos \phi_0 \end{array} \right) ds \]

\[\left(\begin{array}{c} \frac{\rho_0}{2} \cos \phi_0 - \rho_0 \phi_0 \sin \phi_0 \\ \phi_0 - \cos \phi_0 \end{array} \right) \]

\[\left(\begin{array}{c} \rho_0 \cos \phi_0 - \rho_0 \phi_0 \sin \phi_0 \\ \phi_0 - \cos \phi_0 \end{array} \right) \]

\[\left(\begin{array}{c} \rho_0 \cos \phi_0 - \rho_0 \phi_0 \sin \phi_0 \\ \phi_0 - \cos \phi_0 \end{array} \right) \]

\[\left(\begin{array}{c} \rho_0 \cos \phi_0 - \rho_0 \phi_0 \sin \phi_0 \\ \phi_0 - \cos \phi_0 \end{array} \right) \]
The systems (6) and \((S_\alpha)\) are equivalent.

Indeed, the right-hand side of \((S_\alpha)\) is the vector-function

\[
P(t) = \left(\frac{\cos \varphi(t)}{\rho^2(t)}, \frac{\sin \varphi(t)}{\rho^2(t)} \right)
\]

and

\[
\frac{d^2}{dt^2} \left(\frac{\cos \varphi(t)}{\rho^2(t)} \right) - \frac{1}{\rho^4(t)} \left(\frac{\cos \varphi(t) - \varphi(t_0)}{\rho^2(t) \rho^2(t_0)} \right) \to 0 \quad \text{as} \quad t \to t_0,
\]

that is, \(P(t)\) is continuous vector-function – the necessary and sufficiently condition for equivalence of (6) and \((S_\alpha)\).

On the other hand \(\dot{\psi}_2 = \frac{d}{dt} \left(\frac{c}{\Delta_2} \right) \cdot \frac{c}{\Delta_2} \{u, \psi_2\},\)

\[
\frac{d}{dt} \left(\psi_2 \left(\begin{array}{c}
\alpha \\
\alpha
\end{array} \right) \right) = \psi_2 \psi_2^{(2)}(\alpha) + \gamma_2 \psi_2^{(2)}(\alpha), \quad (\alpha = 2, 3)
\]

Then from \((S_\alpha)\) we obtain the system (with \(u = u^{(2)}\)):

\[
\frac{c}{\Delta_2} \{u, \psi_2\} \psi_2 + \frac{c}{\Delta_2} \psi_2 = \frac{O_2 \cos \varphi}{\rho^2},
\]

\[
\frac{c}{\Delta_2} \{u, \psi_3\} \psi_3 + \frac{c}{\Delta_2} \psi_3 = \frac{O_2 \sin \varphi}{\rho^2}.
\]

Multiplying the first equations of (7) by \(u_2\), the second - by \(u_3\) and summing we obtain:

\[
\frac{c}{\Delta_2} \{u, \psi_2\} \{u, u\} + \frac{c}{\Delta_2} \psi_2 = \frac{O_2 \cos \varphi + u_3 \sin \varphi}{\rho^2},
\]

that is

\[
\frac{c}{\Delta_2} \{u, \psi_2\} = \frac{O_2 \psi_2}{c^2 \rho^2}.
\]

Thus we have \(\psi_2 = \frac{O_2 \psi_2}{c^2 \rho^2}\).

Multiplying the first equations of (7) by \(\cos \varphi\), the second – by \(\sin \varphi\) and summing, and next multiplying the first equations of (7) by \(\sin \varphi\), the second - by \(\cos \varphi\) and summing, we obtain the system

\[
\begin{align*}
\psi_2 \psi_2^{(2)}(\alpha) (\rho \psi_2^2) + \gamma_2 (\rho \psi_2^2) = \frac{O_2}{\rho^2}, & \quad \text{or} \\
\psi_2 \psi_2^{(2)}(\alpha) (\rho \psi_2^2) + \gamma_2 (2\rho \psi_2^2) = 0
\end{align*}
\]

\[
(\psi_2 = \frac{O_2 \psi_2}{c^2 \rho^2})
\]

\[
\psi_2 \left(\begin{array}{c}
\rho \psi_2^2 \\
\rho \psi_2^2
\end{array} \right) = \frac{O_2}{c^2 \rho^2} \left(c^2 - \rho^2 \right)
\]

\[
\psi_2 \left(\begin{array}{c}
\rho \psi_2^2 \\
\rho \psi_2^2
\end{array} \right) = -\frac{O_2}{c^2 \rho^2} \rho \psi_2 \\
\psi_2 \left(\begin{array}{c}
\rho \psi_2^2 \\
\rho \psi_2^2
\end{array} \right) = 0
\]

(8)

The final system (8) is equivalent to the system (4), since

\[
\psi_2 = \frac{\rho \psi_2}{c^2 \rho^2}.
\]

REFERENCES

Recommended for publication by Department of Mathematics, Faculty of Mining Electromechanics